Aerial photograph of Fredericksburg, view south along the Rappahannock River, 1933.
Fredericksburg City Council
Mary Katherine Greenlaw, Mayor
Charlie L. Frye, Jr., Vice-Mayor, Ward Four
Kerry P. Devine, At-Large
Matthew J. Kelly, At-Large
Jason N. Graham, Ward One
William C. Withers, Jr., Ward Two
Timothy P. Duffy, Ph.D., Ward Three

Fredericksburg Architectural Review Board
Jonathan Gerlach, Chair
Karen Irvin, Vice Chair
Laura Galke
Adriana Moss
Helen P. Ross
Sabina Weitzman
James Whitman

Project Consultant
Bryan Clark Green, Ph.D.
Morgan Easterly
Commonwealth Architects
101 Shockoe Slip, Third Floor
Richmond, Virginia 23219

City Staff
Kate Schwartz, Historic Resources Planner

Adopted July 13, 2021
By City Council Resolution 21-58

Acknowledgements
The activity that is subject of this publication has been financed in part with Federal funds from the National Park Service, U.S. Department of the Interior. However, the contents and opinions do not necessarily reflect the views or policies of the Department of Interior, nor does mention of trade names or commercial products constitute endorsement or recommendation by the Department of the Interior.

This program receives Federal financial assistance for identification and protection of historic properties. Under Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, and the Age Discrimination Act of 1975, as amended, the U.S. Department of the Interior prohibits discrimination on the basis of race, color, national origin, disability or age in its federally assisted programs. If you believe you have been discriminated against in any program, activity, or facility as described above, or if you desire further information, please write to: Office for Equal Opportunity, National Park Service, 1849 C Street NW, Washington, D.C. 20240.

1806 plat of Fredericksburg as surveyed by Bartholomew Fuller.
1. **Introduction**
 A. The Design Review Process
 B. ARB Process Steps
 C. Architectural Review Chart

2. **Planning Your Project**
 A. Building Treatment Terms
 B. Standards for Rehabilitation
 C. Federal, State, & Local Incentives
 D. Health & Safety Issues

3. **Existing Buildings: Building Elements**
 A. Foundations
 B. Windows
 C. Shutters
 D. Doors
 E. Porches & Entries
 F. Awnings
 G. Architectural Details & Trim
 H. Roofs, Dormers, Chimneys, & Gutters
 I. Storefronts

4. **Existing Buildings: Building Materials**
 A. Wood
 B. Masonry: Brick & Stone
 C. Stucco
 D. Metal
 E. Glass
 F. Slate
 G. Substitute & Imitative Materials
 H. Paint

5. **Site Elements**
 A. Fences & Walls
 B. Lighting
 C. Outbuildings, Garages, & Other Structures
 D. Decks
 E. Site Appurtenances
 F. Parking
Fredericksburg has long relied upon its rich history as a source for identity, tourism, and economic development. In 1972, Fredericksburg’s Zoning Ordinance established its Historic District and the City Council-appointed, volunteer-led Architectural Review Board (ARB). While the City of Fredericksburg administers the underlying regulatory process, the ARB serves as the decision-making body that interprets guidance over the Historic District.

The legislative foundations for the Certificate of Appropriateness (COA) and ARB processes can be found in Chapter 72, Article 23 of the City’s Unified Development Ordinance (UDO). The Old and Historic Fredericksburg District overlay is defined in Chapter 72, Article 34 of the UDO. The City’s authority to create and regulate the local Historic District is enabled by the State of Virginia in Virginia Code Section 15.2-2306.
INTRODUCTION

Old and Historic Fredericksburg District overlay shown in blue.
The ARB has long viewed its role not as resisting development, but rather shaping development in a way that encourages vibrant new economic activity while respecting Fredericksburg’s rich and diverse history. It can be a challenge, but Fredericksburg’s compelling combination of a lively central business district coupled with a cohesive Historic District speaks to generations of success.

In the vast economic expansion that took place after World War II, many cities across America permitted the destruction of urban neighborhoods. Highways were designed with engineering efficiency in mind, but little regard for their impact upon the architectural and cultural fabric of the cities through which they plowed. City blocks, and sometimes whole neighborhoods, were similarly demolished in the name of urban renewal. This process often had a devastating impact upon the architectural and cultural fabric of those localities, and dubious success as a new architectural model.

The passage of the National Historic Preservation Act of 1966 sought to address these concerns nationwide, and called for a new approach to planning in which the impacts upon historic buildings, neighborhoods, and cities were given weight alongside the more traditional measures of economic development. As a result, cities and towns across the United States undertook legislative action to protect their historic resources, which were beginning to be recognized as possessing not just architectural and cultural value, but economic value as well.
In the 1960s, engaged in its own efforts at urban renewal, the City of Fredericksburg prepared to demolish portions of lower Charles Street to clear the way for new commercial development and low-income housing projects. This plan, along with the demolition of prominent buildings, the evolution of citizens’ groups into the Historic Fredericksburg Foundation, Inc., and the creation of federal enabling legislation, led to a push for the creation of the city’s Historic District. By 1972, Fredericksburg’s City Council had adopted the Old and Historic Fredericksburg District Ordinance, which sought to preserve a 40-block area of downtown Fredericksburg. The Historic District Ordinance requires that property owners within the district obtain a Certificate of Appropriateness (COA) from the ARB before making exterior changes to their buildings; a process designed to both accommodate the new and respect the old.

A. The Design Review Process

What is the ARB?
The ARB is a panel of seven knowledgeable citizens appointed by City Council to review the applications submitted in accordance with the Historic District Ordinance. Terms of appointment are four years and members can serve two consecutive terms. All members must have demonstrated interest, competence, or knowledge in historic preservation, and the Board must include a registered architect or architectural historian as well as a member with professional training or experience in architecture, history, architectural history, archaeology, or planning. City Council seeks volunteers with a range of specialties so that Fredericksburg has the benefit of their experience and perspective.

When is design review required?
When an owner wishes to undertake work on the exterior of a building located within Fredericksburg’s Historic District, the property owner must obtain a COA from the ARB. Work that triggers the need for a COA includes alterations that change the appearance of the building, additions, demolition, relocation, and the construction of new buildings. Accessory structures (such as sheds and garages), fences, and signs are also subject to review.

The standard for this is the question: is the work visible from the public right-of-way (a city street, median, or sidewalk) or from City property? If so, the work likely requires a COA.

For existing buildings, a COA is required for publicly visible work on the exterior of the building, such as:
- Changes to siding or exterior cladding.
- Changes to porches and entrances.
- Changes to windows and doors.
- Installation of storm doors.
- Installation of fences or signs.

Not all work requires a COA. Alterations that are not visible from the public right-of-way are not subject to review by the ARB. Repairs that replace deteriorated materials with identical materials (also known as “replacement in kind”) are not subject to review. A COA is not required for repainting of painted surfaces, gardening and landscaping, most interior modifications, or routine maintenance. Some interior work extends to the exterior of a building, as in the case of elevators where an overrun through the roof is generally required. In such instances, a COA may be necessary.
What Does NOT Constitute Routine Maintenance, Repair, and Replacement?

- Wholesale replacement of any exterior building materials.
- Replacement of ANY historic material with a different material, such as replacing true wood with fiber cement or vinyl products.
- Replacement of doors, windows, or other fenestration elements.

When does the ARB meet?
The ARB meets on the second Monday of every month. Meetings are adjusted when they conflict with state or federal holidays, to ensure full participation of applicants and citizens. Meetings begin at 7:00pm, generally in City Hall Council Chambers. These meetings are public, and all interested citizens are invited to attend and voice their opinions. These meetings are advertised in the Free Lance-Star and on the City website. Information on pending applications is available to the public and may be examined in the Community Planning and Building Department prior to the hearing.

The ARB holds supplementary meetings on the fourth Monday of each month, as needed. Notice of these meetings is posted at the Circuit Court House and on the City website. These are not public hearings, but members of the public are invited to attend. For larger projects, the ARB sometimes finds it helpful to meet on site, should the applicant request such a meeting.

How can an applicant receive assistance in the process?
The review process may seem confusing to those undertaking their first approval process. Typically, the larger the project, the greater the design challenge faced when integrating the proposed project into Fredericksburg’s built environment. In recognition of this fact, the ARB will meet with applicants, upon request, to work out various aspects of a project prior to completing a formal application. This preliminary discussion is especially useful for larger projects, where there are potentially greater design challenges to be resolved. Many architects and developers, as well as property owners and City residents, take advantage of this process. To initiate an informal review, contact the Community Planning and Building Department. There is no application fee for an informal review, but potential applicants should submit sufficient documentation to allow for adequate discussion. City staff is also available to provide guidance and assist applicants with any questions or concerns.

Submitting an application
Applicants must submit the certificate of appropriateness application form, a fee corresponding to the project type, and all documentation necessary to clearly explain the proposed work. For exterior alterations, this documentation should include plans and elevations, drawn to scale, showing any demolition and proposed changes, including proposed materials. Detailed drawings may also be necessary to illustrate window and doorway treatments. For signs, documentation should include a scaled drawing, with proposed materials indicated and an elevation of the building showing the location of the proposed sign. For fences and walls, documentation should include a plat or sketch map showing the location of the proposed fence, an elevation or photo showing its design, and a list of proposed materials. Applications that do not include sufficient information may be rejected or the review process delayed.

Who should attend the meeting?
Either the applicant or a representative should be present at the meeting when the application is reviewed in case members of the ARB have questions. A representative may be a contractor, designer, architect, or other
individual that can represent the property owner and is knowledgeable about the request and project details. If the applicant is not present and there are questions left unanswered, the review process may be delayed.

ARB Decisions
When a construction project, sign, fence, or other proposed alteration is approved by the ARB, the Planning department will issue a COA within ten days. Any ARB decision may be appealed to City Council, either by the applicant or by another party with standing to appeal. Written notice of the appeal must be submitted to the Clerk of Council within 30 calendar days of the decision by the ARB and must clearly state the standard violated or misapplied by the ARB.

Are private citizens the only ones who have to follow these procedures?
The ARB reviews City projects within the Historic District and provides advisory review of projects undertaken by the City outside the Historic District. This requirement gives citizens an opportunity to comment on public investments.

View west along the 400 block of Hanover Street.
B. ARB Process Steps
The design review process has some variation depending on the scale of the project under consideration. Projects generally fall into one of three categories: 1) small, administrative review items, such as signs, fences, or other minor alterations, 2) larger projects, such as additions, alterations, accessory structures, or demolitions, and 3) new construction of principal buildings. The process is described below, and illustrated in the accompanying charts.

For Administrative Review Items (signs, fences, minor alterations)
- Application, supporting documentation, and fee submitted.
- Application determined complete and eligible for administrative review by staff.
- Staff review and decision.
- Submitted to ARB for consent (ARB can approve, deny, or modify).
- COA issued if ARB consents to or modifies the decision. The ARB does have the option to remove items from the consent agenda for further discussion and a regular public hearing.
- Other required permits may be issued at this time (sign permit, fence permit).

For Additions, Alterations, Accessory Structures, Demolitions
- Application, supporting documentation, and fee submitted.
- Determination of complete application.
- Staff review.
- Public hearing by the ARB.
- ARB approves, denies, or modifies the request.
- COA issued if the ARB approves or modifies the request. Denials may be appealed.
- Other required permits may be applied for/issued (building permits, etc.).

For New Construction
- Application, supporting documentation, and fee submitted.
- Determination of complete application.
- Mailed notifications sent by applicant to adjacent property owners.
- Staff review.
- Public hearing on site planning, scale, and massing by ARB.
- ARB approves, denies, or modifies the request.
- Partial COA issued if the ARB approves or modifies the request. Denials may be appealed.
- Applicant may move forward with other development review procedures, including a minor or major site plan at this time.
- Additional details submitted by applicant for all elements of the design, including detailed material specifications.
- Mailed notifications sent by applicant to adjacent property owners.
- Staff review.
- Public hearing on all elements of the detailed architectural design.
- ARB approves, denies, or modifies the request.
- COA issued if the ARB approves or modifies the request. Denials may be appealed.
- Other required permits and reviews can proceed.
FOR ADMINISTRATIVE REVIEW ITEMS (SIGNS, FENCES, MINOR ALTERATIONS)

Application submitted

Staff determines eligibility for administrative review

Administrative review and recommendation submitted to ARB on consent

ARB denies the request

ARB consents to the decision and approves the application

Action appealed to City Council

Council upholds ARB decision

Council overturns ARB decision

Appeal to Circuit Court

Certificate of Appropriateness issued.
FOR ADDITIONS, ALTERATIONS, ACCESSORY STRUCTURES, DEMOLITIONS

1. Application submitted
2. Staff review and recommendation
3. Public Hearing by ARB
 - ARB denies the request
 - Action appealed to City Council
 - Council upholds ARB decision
 - Appeal to Circuit Court
 - Council overturns ARB decision
 - Certificate of Appropriateness issued.
 - ARB approves or modifies the request
FOR NEW CONSTRUCTION

Application submitted

Staff review and recommendation

Public Hearing by ARB on site planning, scale, and massing

ARB approves or modifies the request and issues partial COA

ARB denies the request

Public Hearing by ARB on all details of architectural design

Action appealed to City Council

ARB approves or modifies the request

Council upholds ARB decision

Council overturns ARB decision

Appeal to Circuit Court

Certificate of Appropriateness issued.
C. Architectural Review Chart

There are times when a user will be required to utilize more than one section of these guidelines to find the information necessary for a project. This chart is intended to aid the user in accessing information that might span multiple sections or pages.

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>PAGE #</th>
<th>NO REVIEW</th>
<th>STAFF REVIEW</th>
<th>ARB REVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fences and Walls</td>
<td>66</td>
<td>repair; replace with exact match</td>
<td>install new</td>
<td>-</td>
</tr>
<tr>
<td>Lighting</td>
<td>68</td>
<td>repair; replace with exact match</td>
<td>Add, change, or remove</td>
<td>-</td>
</tr>
<tr>
<td>Outbuildings</td>
<td>70</td>
<td>repair</td>
<td>-</td>
<td>add any new structure</td>
</tr>
<tr>
<td>Windows</td>
<td>27, 99</td>
<td>repair, reglaze</td>
<td>-</td>
<td>any replacement; change design, material or size; close off or create new window openings</td>
</tr>
<tr>
<td>Porches, Doors and Entrances</td>
<td>35, 36, 99, 101</td>
<td>repair damaged pieces or replace with exact match</td>
<td>install handrails or make minor alterations</td>
<td>change design, material or size; close off or create new entrances</td>
</tr>
<tr>
<td>Storm Doors and Windows</td>
<td>32, 35</td>
<td>repair, reglaze; install approved type of storm windows</td>
<td>install storm doors</td>
<td>-</td>
</tr>
<tr>
<td>Awnings and Shutters</td>
<td>34, 39</td>
<td>repair; replace with exact match</td>
<td>add, change, or remove</td>
<td>-</td>
</tr>
<tr>
<td>Roof Materials</td>
<td>42, 98</td>
<td>repair damaged pieces or replace with exact match</td>
<td>replace with new material or design</td>
<td>-</td>
</tr>
<tr>
<td>Storefronts</td>
<td>46, 100</td>
<td>repair; replace parts with exact match</td>
<td>-</td>
<td>install new or make changes</td>
</tr>
<tr>
<td>Gutters and Downspouts</td>
<td>45</td>
<td>reattach, repair, replace with exact match</td>
<td>Install or replace with new type</td>
<td>-</td>
</tr>
<tr>
<td>Wood Siding</td>
<td>50</td>
<td>repair damaged area or replace pieces with exact match</td>
<td>-</td>
<td>wholesale replacement or change in material or design</td>
</tr>
<tr>
<td>Masonry</td>
<td>52</td>
<td>repair damaged area; repoint; repaint painted masonry</td>
<td>-</td>
<td>any other change</td>
</tr>
<tr>
<td>Stucco</td>
<td>54</td>
<td>Repair damaged pieces; replace with exact material</td>
<td>-</td>
<td>remove, cover, or replace with alternate material</td>
</tr>
<tr>
<td>Architectural Metals</td>
<td>56</td>
<td>repair damaged pieces; replace with exact match</td>
<td>-</td>
<td>paint unpainted, alter, or replace with substitute materials</td>
</tr>
<tr>
<td>Glass</td>
<td>58</td>
<td>Repair damaged pieces; replace with visual match</td>
<td>-</td>
<td>change in design, material, or size</td>
</tr>
<tr>
<td>Slate</td>
<td>59</td>
<td>repair damaged pieces; replace with exact material</td>
<td>-</td>
<td>Replace with new material, color or detail</td>
</tr>
<tr>
<td>Synthetic Siding</td>
<td>60</td>
<td>repair damaged pieces or replace with exact match</td>
<td>replace all siding with exact match</td>
<td>install over historic and/or original materials</td>
</tr>
<tr>
<td>Paint</td>
<td>62</td>
<td>repaint, no review of colors</td>
<td>-</td>
<td>apply over any unpainted material</td>
</tr>
<tr>
<td>Murals</td>
<td>78</td>
<td>-</td>
<td>-</td>
<td>apply over any unpainted material</td>
</tr>
<tr>
<td>New Construction</td>
<td>88</td>
<td>-</td>
<td>-</td>
<td>add any new structure</td>
</tr>
<tr>
<td>Building Additions</td>
<td>106</td>
<td>-</td>
<td>-</td>
<td>add any exterior feature or structure</td>
</tr>
<tr>
<td>Signage</td>
<td>76</td>
<td>repair, touch up</td>
<td>replace, add, change or remove</td>
<td>-</td>
</tr>
<tr>
<td>Relocation</td>
<td>120</td>
<td>-</td>
<td>-</td>
<td>relocate any structure</td>
</tr>
<tr>
<td>Demolition</td>
<td>122</td>
<td>-</td>
<td>-</td>
<td>remove part or all of a structure</td>
</tr>
</tbody>
</table>
INTRODUCTION

Early 20th-century postcards showing the John Paul Jones House and the Fredericksburg Passenger Station.

PASSenger Station, Fredericksburg, Va.

Early 20th-century postcards showing the John Paul Jones House and the Fredericksburg Passenger Station.
CH. 2 Planning Your Project

A. Building Treatment Terms
B. Standards for Rehabilitation
C. Federal, State, & Local Incentives
D. Health & Safety Issues

This section provides general terminology, the standards for review, and information to be aware of during the project planning phase, such as incentives for rehabilitation and health and safety issues. Taking these elements into consideration early in the process will lead to a more successful project overall, and could assist property owners in saving time, money, and frustration.
A. BUILDING TREATMENT TERMS

Many terms used in the treatment of historic buildings are, confusingly, used interchangeably. The four terms below provide the primary four approaches to building treatment along with the National Park Service definitions of them.

Preservation
Preservation focuses on the maintenance and repair of existing historic materials and the retention of a property’s form as it has evolved over time.

Restoration
Restoration depicts a property at a particular period of time in its history, while removing evidence of other periods. This type of project is usually undertaken by a museum and seeks to capture a building at a particular time in history.

Reconstruction
Reconstruction recreates vanished or non-surviving portions of a property for interpretive purposes.

Rehabilitation
Rehabilitation acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character. This approach must not damage or destroy original materials or historically significant materials, features, or finishes, and requires that any changes be compatible with the building and its context.

Rehabilitation is the most commonly used of the four categories, and is the primary treatment that is relevant to the work of the ARB. The Secretary of the Interior’s Standards for Rehabilitation, the guiding principles behind these guidelines, were developed for use with rehabilitation projects. The Secretary of the Interior’s Standards (Department of Interior Regulations, 36 CFR 67) apply to historic buildings of all materials, construction types, sizes, and uses, and encompass both the exterior and the interior, related landscape features and the building’s site and environment, and attached, adjacent, or related new construction. Historic preservation projects are typically focused on maintenance, and in most cases will not require a COA. The Standards are to be applied to specific rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility.

B. STANDARDS FOR REHABILITATION

The City of Fredericksburg has adapted the Secretary of the Interior’s Standards slightly for ARB use; they are almost identical to the federal Standards, and are found in City Code § 72-23.1(D)(2). That section of City Code explains, “No existing principal or accessory building or structure within the HFD shall be altered unless approved by the ARB as being architecturally compatible with the historic landmarks, buildings, and structures located therein. The ARB shall base its decisions on the criteria contained herein, which are similar to the United States Secretary of the Interior’s Standards for Rehabilitation.”
The Fredericksburg guidelines are:

1. Every reasonable effort shall be made to provide a compatible use for a property by requiring minimal alteration of the building, structure, or site and its environment, or by using a property for its originally intended purposes.

2. The distinguishing original qualities or character of a building, structure, or site and its environment shall not be destroyed. The removal or alteration of any historical material or distinctive architectural features should be avoided when possible.

3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development or that have no historical basis shall be discouraged.

4. Most properties change over time; those changes that have acquired historic significance in their own right should be retained and preserved. Restoration of original features may be permitted when substantiated by documentary, physical, or pictorial evidence.

5. Distinctive stylistic features or examples of skilled craftsmanship which characterize a building, structure, or site shall be preserved.

6. Deteriorated architectural features shall be repaired rather than replaced, wherever possible. If replacement is necessary, the new material should match the material being replaced in composition, design, color, texture, and other visual qualities. Where severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features should be substantiated by documentary, physical, or pictorial evidence.

7. The surface cleaning of structures shall be undertaken using the gentlest means possible. Sandblasting and other chemical or physical cleaning methods that cause damage to historic building materials shall not be undertaken.

8. Every reasonable effort shall be made to protect and preserve archaeological resources affected by or adjacent to any project.

9. Contemporary design for alterations and additions to existing properties shall not be discouraged when such alterations and additions do not destroy significant historical, architectural, or cultural material, and such design is compatible with the size, scale, color, material, and character of the property, neighborhood, or environment.

10. New additions, alterations, and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.
C. FEDERAL, STATE, & LOCAL INCENTIVES

Historic district regulations are intended to promote longevity and value over the long-term, but acknowledge that the initial investment in high-quality materials can be more expensive. Some incentives do exist at the local, state, and federal levels to assist property owners.

Local Incentives

Property Tax Relief
Fredericksburg offers a partial property tax exemption for qualifying rehabilitated structures that are at least 40 years old. For those properties that qualify, the initial increase in property taxes caused by rehabilitation will be excused for two years and continue on a declining scale for five additional years. Residential properties must be located within the Historic District or listed on, or eligible for, the National Register of Historic Places. Commercial properties may be located anywhere in the City. Contact the Commissioner of the Revenue at City Hall for more information or call (540) 372-1207.

Façade Improvement Design Assistance
Free design assistance for exterior alterations to commercial properties in Fredericksburg’s Main Street District is provided through Fredericksburg’s Main Street organization. Contact Main Street at (540) 479-1595 or visit fredericksburgdowntown.org.

State and Federal Incentives

State and Federal Rehabilitation Tax Credits
Rehabilitation tax credits are an investment tax credit offered by the federal government (administered by the National Park Service) and several states, including Virginia (administered by the Virginia Department of Historic Resources). The City of Fredericksburg plays no role in reviewing state and federal rehabilitation tax credits.

The tax credit is a dollar-for-dollar reduction in tax liability; it is not a tax deduction. The federal credit is worth 20% of certified expenses, and the Virginia credit is worth 25%; the two credits can be combined for a 45% reduction in certified project costs.

For the federal credit, the building must be income-producing (a commercial structure, multi-family rental housing, etc.), while for the Virginia credit, both income-producing and owner-occupied buildings are eligible. For the federal credit, there is a five-year holding period, during which time the building cannot be sold, and no additional changes can be made without NPS approval. For the Virginia credit, there is no holding period. For the federal credit, the credits can be carried forward twenty years, and back one year; for the Virginia credit, the credits can be carried forward ten years, but not back.

The most significant difference between the state and federal credits is the state credit does not require that the property be income-producing. As a result, it can be utilized by homeowners for an owner-occupied house, and by non-profits (with proper structuring). More information on both credits can be found through the Virginia Department of Historic Resources.
INTRODUCTION

D. Health & Safety Issues

When planning a repair or rehabilitation project, it is important to keep in mind some of the health and safety issues one might encounter. Among the most common health and safety issues when working with older buildings is the presence of lead paint and/or asbestos.

The first step is identification—before beginning a project, understand that hazardous materials might be present in original materials, elements, and features such as windows, siding, and roofing. Secondly, look into alternatives to removing, damaging, or altering original materials, elements, and features. Replacement or removal should be a last resort: there are many safe and creative ways to repair and adapt original materials, elements, and features, even those that may contain hazardous materials, to some degree.

Once a treatment has been selected, be sure to hire experienced contractors and craftspeople who are not only certified for the abatement of the hazardous materials to be removed, but are also conversant with historic buildings, and are sensitive to working with historic materials.

For more information, see NPS Preservation Brief #37, Appropriate Methods for Reducing Lead Paint Hazards in Historic Housing. General recommendations for approaching lead paint and asbestos are offered here.

Lead Paint

Lead-containing paint was once commonly used throughout the United States, and it is not unusual to encounter lead paint in historic buildings. Commercially-produced paint containing lead has not been manufactured since 1978. Therefore, lead paint may not be present in the top coat of exterior paint on a building. If the paint is sound, it may be possible to encapsulate the paint layers under new exterior paint.

If the paint has failed and requires removal, specific practices for abatement must be followed. Lead paint is also likely to be found on the interior and similar rules for encapsulation and/or abatement apply.

Asbestos

Asbestos was once used as a fire-retardant material, and was also employed to provide thermal and acoustic insulation; this was common from the early 20th century until the 1970s, when its hazards became well-known. Asbestos is most frequently encountered in HVAC duct insulation, heating pipe and boiler wrapping, roofing materials, siding material and fiber cement siding shingles, plaster, vinyl floor tiles, and window caulking and glazing.

If the presence of asbestos is suspected, do not disturb it; if it is crumbling or deteriorating, it should be tested by a certified environmental professional. Asbestos is generally a hazard when it is disturbed and becomes airborne. There are several strategies that professionals can employ to either encapsulate or remove asbestos, and dispose of it in a properly designated location. Unlike lead paint, which is a coating, asbestos can be an integral part of these materials, and, as a result, mitigation can be more complicated.
CH. 3
Existing Buildings: Building Elements

A. Foundations
B. Windows
C. Shutters
D. Doors
E. Porches & Entries
F. Awnings
G. Architectural Details & Trim
H. Roofs, Dormers, Chimneys, & Gutters
I. Storefronts

This chapter guides the maintenance and repair of major building elements, the appropriateness of replacement, and the design of alterations. Retention and repair of historic materials and design components is prioritized over any replacement. The sensitive introduction of modern or alternate materials may be considered, but the review will take into account durability, visual compatibility, and the effect on surrounding historic materials.
REPAIR & REHABILITATION OF EXISTING BUILDINGS
A. FOUNDATIONS

The foundation forms the base of a building and its condition is important to the overall stability of the structure. Foundations are most commonly constructed of brick, stone, or concrete and may be formed of solid walls or piers.

1. Retain and preserve historic foundation materials.
2. Ensure that the foundation mortar joints remain properly repointed.
3. Retain any decorative vents that are original to the building.
4. Do not alter the original height of the historic foundation.
5. Do not install a new brick veneer covering or wall cladding materials, such as siding, over historic foundation materials.
6. Do not apply a stucco coating over brick or stone to attempt to correct a moisture problem.
7. Do not install new openings such as window wells in foundations on primary faces of the building.
8. Do not paint unpainted brick, stone, or other masonry foundation materials.

Maintenance Recommendations

- Ensure that the site is graded so that water flows away from the foundation.
- For masonry foundations, ensure that the mortar joints are properly pointed.
- Do not block foundation vents; it is important to maintain these to retain a measure of air circulation in buildings with crawlspace. If foundation vents are blocked, it can lead to a build-up of unwanted levels of moisture in the crawlspace, damaging adjacent wood framing and masonry joints.
- Remove any vegetation, such as tree roots, that may cause structural disturbances to the foundation.
- If moisture is penetrating the foundation, seek the advice of an architect or engineer experienced in working with historic buildings to recommend a treatment plan to correct this condition. A French drain may need to be installed around the foundation, or other improvements may need to be made to reduce moisture penetration.
B. Windows

The preservation and repair of existing windows is prioritized over any replacement, along with the use of approaches to improve energy performance that do not compromise the design and materials of historic windows. Proposed replacement windows will be evaluated to determine whether they are architecturally compatible and historically appropriate for use in the district. Each case will be evaluated on the merits of the particular building and the window product proposed.

For more information, please see the following NPS Preservation Briefs:
- Preservation Brief #3: Improving Energy Efficiency in Historic Buildings
- Preservation Brief #9: The Repair of Historic Wooden Windows
- Preservation Brief #10: Exterior Paint Problems on Historic Woodwork
- Preservation Brief #12: The Preservation of Historic Pigmented Structural Glass (Vitrolite and Carrara Glass)
- Preservation Brief #13: The Repair and Thermal Upgrading of Historic Steel Windows
- Preservation Brief #33: The Preservation and Repair of Historic Stained and Leaded Glass
- Preservation Brief #39: Holding the Line: Controlling Unwanted Moisture in Historic Buildings

General Policies

Historic windows are extremely vulnerable to weather because of their location and moving parts, and require careful maintenance. If they are not painted at regular intervals (every three years is recommended), the wood will crack, warp, and rot. Sills, lintels, surrounds, and hoods—although they may be constructed of other materials such as brick, concrete, stone, or metal—will also fail if not properly maintained.

Direct replacement of any window requires approval by the Architectural Review Board. A building permit is also required for the replacement of any windows in the district. Where staff determines that a window is not visible from a public right-of-way, the window is not regulated by the ARB and may be replaced with any suitable window allowed by the Virginia Construction Code.

Any request for window replacement should be accompanied by a window assessment form and thorough photo documentation to determine the need for replacement. The form is available online or from the Community Planning and Building Department.

Energy Efficiency

Replacement of windows and doors is not justified simply as a means to improve an historic building’s thermal performance. Many studies have shown that windows account for only about 10% of a building’s thermal losses, with the greatest losses through roofs and walls. In most cases, the energy efficiency of an older window can be increased to that of a thermal pane replacement window by repairing or installing weather-stripping and by installing a storm window. Simple tasks like sealing air leaks, adding insulation, adjusting mechanical systems, and installing a flue damper can cut heat loss or gain more economically than replacing windows and doors. To identify the best areas for energy improvement, a comprehensive energy audit should be conducted by an independent provider not associated with window suppliers.
THE PARTS OF A TYPICAL DOUBLE-HUNG WOOD WINDOW

- Head
- Muntin
- Storm Window
- Casing
- Weight
- Meeting Rail
- Insul. Glazing
- Sill
- Lamb
- Sub Sill
- Rail
- Stool Apron
1. Replacement of windows and related components is appropriate only when the original components are demonstrably beyond repair. In this case, the four visual characteristics—material, texture, color, and design—of the new components must replicate the original as closely as possible.

2. Openings should not be enlarged or reduced for a replacement window, unless a case can be made that it is architecturally appropriate.

3. If extensive replacement of parts is necessary, it may be more practical to purchase new sash which can be installed into the existing frames. Replacement of one or both sashes within the original frame may be an appropriate alternative to replacing an entire wood window. It is strongly recommended that the new sash be custom-made to ensure correct fitment in the existing frame. The use of fillers to make up for undersized sash is not acceptable.

4. The use of vinyl jamb liners is discouraged unless their appearance will not detract from the historic character of the completed window.

5. When replacing an original sash that has multiple panes, the new window should match the pane configuration. True or simulated divided lights (SDLs) with interior space bars are appropriate.

6. If both sashes and frames are deteriorated beyond repair, replacement units with sash pre-installed in the frame may be appropriate. The preferred method of installation is to remove the existing window and frame and replace it with the new unit. When done properly, this approach can yield a close approximation to the original appearance. Inserting a new window unit of this type within the existing frame is not permitted since it typically adds a layer of material and reduces the glass size, both of which alter the historic character of the window. For this approach to be approved, the finished installation must result in a close approximation of the original sash, frame, and trim dimensions and profiles. The addition of filler strips and other non-historic elements to compensate for gaps, misalignment, or under-sizing of the replacement unit is not acceptable.

7. In the case of altered openings, the owner is strongly encouraged to restore them to their original sizes. When replacing previously replaced windows, an effort should be made to return to a close approximation of the originals. Frequently, neighboring buildings provide guidance to original window size and design. However, it should be noted that previously replaced windows may have attained significance in their own right, and their treatment should be based on thorough consideration of a building’s historic significance and character-defining features.

8. Avoid trying to make a building look older than it is by installing windows that are from an earlier period of construction.

9. If new windows are proposed on secondary building faces, ensure that they align with the size, rhythm, materials, and design of existing windows. Changes to existing windows or the addition of new windows along a secondary wall will be considered on a case-by-case basis.

10. New glazing should be clear, non-reflective, and without tint. Low-E (low emissivity) glazing is encouraged for energy conservation, but the glass should have minimum visible light transmission of 72% and reflectance of less than 10%. Low-E 272 generally meets these criteria.
Maintenance Recommendations
Wood windows, particularly those constructed of old-growth species typically found in historic buildings, are strong, flexible, rot-resistant, and easily repaired. Their lifetime, if properly maintained, can literally be hundreds of years. Even when abused and allowed to deteriorate, they can often be repaired at a cost less than or equal to that of replacement. When such repairs are made to historic windows they should be made with in-kind materials and hardware.
• Where wood is deteriorated yet salvageable, consolidants or epoxies may be used.
• Keep painted surfaces well painted.
• Avoid water infiltration by ensuring caulk and glazing putty are intact and in good condition.
• Ensure sills slope away from the building so water will run off rather than forming puddles. Repair original windows by patching, splicing, consolidating, or reinforcing. Wood may appear to be rotten because of peeling paint or separation of joints, yet still be sound and repairable. Rotted parts can be replaced as necessary, without replacing the entire window.

Metal windows, typically made of steel or aluminum, are often mistakenly deemed not worthy of preservation due to the assumption that they cannot be repaired or made energy efficient except at great expense. Repair and retrofit of these windows can be more economical than wholesale replacement, and all too often, replacement units are unlike the originals in design and appearance.
• Rust and flaking paint on steel windows can be removed and elements repainted using a rust-inhibiting primer.
• Missing screws, fasteners, and hinges can often be replaced through a variety of suppliers, and operating performance can be improved through lubrication of hinges or other moveable parts.
• Elastomeric caulk can be used to seal surrounds and prevent air infiltration.

Replacement Window Types
Solid Wood Windows
These units are the preferred replacement for historic wood windows. Stock window components are often similar to original wood windows in design and dimension. If desired, sash and trim can be custom made to exactly match the originals. Wood windows require the same degree of maintenance as original historic windows, but provide the most authentic appearance. When insulated glass is used, the muntin profiles of true divided light units will be necessarily wider than those used traditionally and cannot typically match the appearance of historic muntins.

Aluminum-Clad Wood Windows
These units, made of wood with exterior aluminum sheathing, may be appropriate replacements for wood windows. The window components are often similar to wood windows in design and dimension, and the exterior is frequently available in a range of standard and custom colors.

Vinyl-Clad Wood Windows
These units, made of wood with exterior vinyl sheathing, may be appropriate replacements for wood windows. The window components are often similar to wood windows in design and dimension, and the exterior is frequently available in a range of standard and custom colors.
This building displays a typical regular rhythm of window openings with a series of nine-over-nine double-hung sash windows on the second story, and six-over-nine double-hung sash windows on the third story. Even though the pattern changed from the second floor to the third, the pattern is regular, and the width of the windows remains constant.

Fiberglass Windows
These units may be appropriate for use on new construction. Certain brands nearly approximate the texture, color, and design of the original windows. The strength of fiberglass allows the window components to be appreciably thinner than solid vinyl or metal components.

Aluminum Windows
These may be appropriate in post-war, mid-century buildings that originally had metal windows. The windows in these buildings are often in bands rather than in individual openings, so stock units may fit with less need for sheet metal infill. New windows can match the originals in profile, although they are usually thicker in order to allow for a thermal break and insulated glazing. Installation usually involves removal of the entire original unit, including frame, unlike the process with wood windows. The end result is a building that appears nearly the same as the original.
Steel Windows
Steel casement windows that appear in buildings of various styles, including Tudor Revival, Gothic Revival, and International, are essential to the historic visual character of those buildings. Rarely can they be replaced successfully with a window of a different type, such as a double-hung or slider, and their very narrow and simple profiles do not lend themselves to non-metallic alternatives. Steel windows are repairable and replacements are available that closely replicate the originals and can incorporate energy enhancements such as double glazing and thermal breaks.

Glass Block
Some mid-century buildings were constructed with glass block, which should be retained, repaired, or replaced in kind. In most buildings, however, the use of glass block to fill window openings, including those in basements, is generally not appropriate. The insulating value of glass block is very low, despite what manufacturers assert in their literature.

Solid Vinyl Windows
Vinyl windows and windows with removable muntins (“grilles”) or muntins sandwiched between the glass panes are not considered appropriate or compatible in any location in the district. Vinyl windows are generally not acceptable as replacements for historic windows for a number of reasons, including the following:
- They do not commonly match the appearance of traditional wood or metal windows.
- Due to the inherent weakness of vinyl and the commonly light gauge of the extrusion, a window’s rails and stiles are broader than in traditional windows, thereby reducing the glass area of the window.
- They are limited in size and often cannot fill large, traditional window openings.
- Vinyl’s strength and dimensional stability is affected by sunlight, and the resulting thermal stress potentially deforms and weakens the window unit over time.
- They cannot be repaired using the basic woodworking tools and techniques used on wood windows.
- Polyvinyl chloride is a petroleum-based material that is not biodegradable, nor is it commonly or readily recycled.

Storm Windows
The use of storm windows is strongly encouraged to protect historic windows and conserve energy. Storm windows are not regulated by the ARB and do not require a building permit, but they should be installed so as not to damage historic material and to be visually minimally obtrusive. Additionally, a number of new storm window products can be installed on the interior of buildings to increase efficiency and preserve historic single-pane windows in place. Storm windows should have wood or metal (usually aluminum) frames. Any divisions within the storm windows should align with equivalent features of the sash, such as the meeting rails.

Interterior storm windows are recommended for use due to their minimal visual presence. These glass inserts typically fit into the inside of the existing window frames with a rubber gasket or compression system that requires no mounting hardware. They are easily removable, do not change the exterior appearance of structures, can increase energy efficiency, and dampen outside noise. It should be noted that the potential for damaging condensation problems must be addressed. Moisture which becomes trapped between the layers of glazing can condense on the colder, outer prime window, potentially leading to deterioration. The correct approach is to create a seal on the interior storm while allowing some ventilation around the prime window.
An example of an evolved window system, with a brick infill panel below, storefront glass in the middle section, and glass block above.
C. Shutters

Shutters are exterior covers for windows, traditionally constructed of wood, used to protect the windows from weather conditions.

1. Retain original shutters and hardware.
2. Wood shutters must be functional and not nailed or fixed to the wall surface. They must be mounted using hinges and shutter dogs/holdbacks that are operable or appear to be operable.
3. Shutters should be sized to fit the window opening and should fully cover the window opening when closed.
4. Metal and vinyl shutters are not recommended, particularly for the facades of buildings.
5. Shutters should only be used on windows that show evidence of their use in the past.
6. Replacement shutters should match the existing ones or be compatible with the style of the structure.
7. Fixed shutters were often used as enclosures on historic porches. New fixed shutters may be used to enclose a portion of a historic or new porch to conceal modern additions.
8. Do not use shutters on composite or bay windows.

Paneled or louvered wood shutters are the most common types. Note the operable hardware, including hinges and shutter dogs to hold the shutters in the open position.

Maintenance Recommendations

- Repair existing shutters following appropriate wood repair guidelines.
- Remove shutters from the house to be able to paint them in their entirety. Shutters are exposed to the elements from all directions and they will deteriorate quickly unless properly maintained.
D. Doors

Historic doors not only help define a building’s architectural style, but are also often the primary focus of a building’s façade.

1. Historic doors must be retained and preserved wherever possible.
2. Masonry and frame openings for doors should be maintained. Infilling original openings is strongly discouraged. Original door surroundings should be retained.
3. Do not remove or radically change doors important in defining the building’s overall historic character.
4. Do not strip doors of historic material and details. These should be retained in any repair or partial replacement.
5. Hardware and locks that are original or important to the historical evolution of the building should be reused.
6. Existing doors should not be removed when an historic structure has been reoriented to accommodate a new use. They may be fixed in place, if necessary, so that the door may be returned to use if circumstances change.
7. A primary door should not be altered to give an appearance that was not originally intended, such as adding a pediment to a simple vernacular entry door.
8. Replacement doors and door surrounds with stamped or molded faux paneling or leaded, beveled, or etched glass are strongly discouraged and rarely permitted.
9. Screen or storm doors placed in front of original, primary residential doors should be simple, full-view styles with clear glass that do not hide the features and detailing of the primary door.
10. Installation and use of exterior storm doors should not damage either door or door frames.

Maintenance Recommendations

- Retain and repair existing historic or original wooden doors and surrounding wood trim with matching materials.
- Elements that are damaged or loose should be repaired to match the detail and material of the existing original fabric.
- Where possible, retain and reuse hardware and locks that are original or important to the historic evolution of the building. Supplemental hardware may be employed to provide additional security or ease of use.
E. Porches & Entries

Porches and entrances not only help define a building's architectural style, they also serve as a focal point of the façade and define the structure's relationship to the street. The retention of these elements is essential in maintaining the integrity of properties.

For additional information, please see the following NPS Preservation Briefs:
Preservation Brief #44: The Use of Awnings on Historic Buildings: Repair, Replacement and New Design
Preservation Brief #45: Preserving Historic Wooden Porches

1. Retain original or historic character-defining porches since these are often critical to the design integrity of the building.
2. Do not remove or radically change entrances and porches important to the building’s overall historic character. Front and side porches are architecturally more ornate than utilitarian back porches.
3. The entire porch should only be replaced if it is too deteriorated to repair or is completely missing. Replacements should match the original as much as possible.
4. A primary entrance should not be altered to give an appearance that was not originally intended, such as adding a pediment to a simple vernacular entrance.
5. Existing entrances or porches should not be removed when an historic structure has been reoriented to accommodate a new use.
6. The addition of a new entrance to a facade is strongly discouraged.
7. Do not enclose porches on facades.
8. Porch enclosures are only appropriate on secondary building walls. Solid materials are not recommended for use in enclosure projects since they can radically alter the historic appearance of a porch. Glass enclosures which reveal decorative porch elements are strongly preferred.
9. When designing a new railing for an existing building which has lost its railing and for which no documentary or physical evidence survives, the balusters in the traditional lattice rail are generally rectangular in section (with the narrow dimension facing the street) or square. The baluster is fitted into the recess at the top rail and a sloped bottom rail. Typical deck railings, consisting of nailed-up stock elements, are not approved as they are not based on a compatible historic model found in Fredericksburg’s historic district.
10. New balusters and railings should be simple in design and constructed of materials that will be compatible with the existing historic materials of the porch.

Maintenance Recommendations

- Elements that are damaged should be repaired to match the detail of the existing original fabric.
- Whenever possible, repair and/or partial replacement of a porch is preferable to complete replacement.
- When restoring a railing or balustrade there may be difficulty in maintaining the original height while meeting current building code. Always consult with the Building Department.
- When replacing a railing on a historic building where the original has been lost, the first step is to look for documentary evidence which records the appearance of that railing. If no documentary evidence survives, look for physical evidence (this may benefit from the help of a design professional).
Full-width front porches are typical, including the example at the Rising Sun Tavern above and a residence on lower Caroline Street below.
The enclosure of this secondary porch retains the character of the original columns and architectural details by using metal and glass elements that are minimally obtrusive and clearly differentiated from the historic features.

If the railing on the left needed to be raised to a code-compliant height, this could be achieved by installing an additional handrail on the inboard side (as shown in the center) or by installing a full-height panel on the inboard side (shown on the right). The panel could be wire mesh, a perforated metal panel, or tempered glass, so long as it rises to the code-compliant height.
F. AWNINGS

Awnings should enhance the individual building on which such coverings are placed as well as the surrounding neighborhood or commercial area. Awnings can cover inappropriate remodeling or transom areas, protect pedestrians from inclement weather, protect window displays from sunlight, and aid in energy conservation.

1. Awnings should be placed carefully so that building elements or existing materials are not damaged or obscured.
2. The size and placement of awnings should not interfere with existing signs, distinctive architectural features of the building, or with street trees or other elements along the street.
3. At least eight (8) feet of clearance must be provided between the sidewalk and the lowest edge of the awning.
4. The use of metal, plastic, or overly ornate fabric awnings should be avoided.
5. Awning mounting hardware should be installed directly into mortar joints to avoid damage to historic masonry.

The awning on this storefront is placed below the decorative cornice, but the transoms remain visible below. The installation has not resulted in damage to any decorative features of the building.

Maintenance Recommendations

- Fabric coverings can be replaced without a COA, though new signage must be approved.
G. Architectural Details & Trim

Elements such as cornices or the detailing surrounding windows and doors are often the most distinctive features of historic buildings, and their retention and preservation is very important.

For additional information, please see the following NPS Preservation Briefs:
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors
Preservation Brief #17: Architectural Character—Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving their Character
Preservation Brief #47: Maintaining the Exterior of Small and Medium Size Historic Buildings

1. Historic architectural detailing should be maintained and preserved rather than removed, simplified, or replaced.
2. If the detailing is deteriorated beyond repair, it should be duplicated using historic building materials wherever possible or using a substitute which matches the historic in composition, design, color, texture, and other visual qualities.
3. Any missing details should be replicated based on physical evidence and/or historic photos.
4. Detailing which was not historically used on a building, or which represents another architectural era, should not be added to the building. This includes brackets, columns, dormers, dentils, shutters, cupolas, etc., that are sometimes added in an attempt to dress up a building or to make it appear older than it actually is.

The detailing on this porch includes scrolled brackets, turned posts, and a variety of decorative trim elements.

Maintenance Recommendations
- Identify the materials used to create decorative elements first and use repair techniques specific to those materials.
- Layers of built-up paint may obscure detailing on these elements. Remove paint carefully to avoid damaging unique trim elements.
Examples of Architectural Details and Trim

Porches, columns, cornices, verge boards, and door and window surrounds are important in defining architectural styles and are often the most distinctive features of historic structures.
H. ROOFS, DORMERS, CHIMNEYS, AND GUTTERS

Preserve and maintain roofs and gutters, arguably the most important utilitarian components of any building. Routine maintenance is essential to the physical integrity of the roof and gutters, which protect the building from the elements.

For more information, please see the following NPS Preservation Briefs:
Preservation Brief #4: Roofing for Historic Buildings
Preservation Brief #19: The Repair and Replacement of Historic Wooden Shingle Roofs
Preservation Brief #29: The Repair, Replacement, and Maintenance of Historic Slate Roofs
Preservation Brief #30: The Preservation and Repair of Historic Clay Tile Roofs

Roofs
1. Retain original roof shape, size, materials, and distinguishing elements.

2. Individual elements of the roof covering, whether slate shingles, metal shingles, metal pans, or asphalt shingles, should be replaced in kind when they are damaged or become detached. If replacement is necessary, materials should match the original in composition, color, thickness, and dimension.

3. Avoid applying paint or other coatings to roofing materials that have historically been unpainted and uncoated. Avoid using materials that are physically or chemically incompatible and which would cause accelerated deterioration or corrosion.

4. Avoid replacing roofs with a substitute material that does not convey the same visual appearance of the historic roof. If replacement of a roof is not technically or economically feasible, the substitute material should convey the same visual appearance of the original roof as much as possible.

5. Avoid reducing the visual integrity of the roof by removing original chimneys, cupolas, skylights, light wells, or other elements that contribute to the style and character of the building.

6. Porch roofs are encouraged to utilize standing- or flat-lock metal seam roofs that are hand-seamed, or closely approximate hand-seaming. Seams that, in section, are large, rectangular seams, reminiscent of pre-formed seams utilized on prefabricated industrial or commercial structures, are not acceptable. Membrane roofs are acceptable substitutes for flat-lock seamed metal roofs.

7. New elements such as vents or skylights should not be added to the façade or other highly visible areas of a roof. Install new elements such as vents, skylights, or solar equipment without diminishing the original design of the building. New skylights, for instance, should be installed so as not to be visible from building facades.

8. Plastic dome skylights are inappropriate in the Historic District.

9. Original wood roof windows, scuttles, and skylights should be retained and repaired wherever possible.
Maintenance Recommendations

- Inspect roofs periodically for signs of deteriorated roofing materials as well as deteriorated or improperly functioning flashing, gutters, and downspouts.
- Loose or deteriorated flashing should be secured or replaced. If aluminum is used for flashing, aluminum nails should be used and then painted.
- Ensure the coping on top of parapet walls is watertight.
- Repair leaking roofs, gutters, and downspouts as soon as possible. Repair deteriorated roof supports and underlayment, as necessary.
- Use metal fasteners in metal roofs and flashing that is compatible with the roofing material (to avoid deterioration due to dissimilar metals).
- Ensure attic spaces are properly vented to prevent condensation.
- Keep gutters and downspouts clear of debris to ensure they function properly to move water away from the building. Cleaning gutters two or three times in the fall and once again in the spring is a basic first step in preventing leaks, deterioration, and even basement seepage.
Dormers
11. Maintain the historic integrity of dormers and re-side them in a material that is reflective of their original construction. There is a distinctive Fredericksburg dormer in which the roofing material extends up the dormer sides. Many dormers were thus clad in slate and metal although some were covered in wood. As older roofs have been replaced, dormers have often been re-sided in wood in an attempt to give a historic appearance.

Chimneys
12. Retain historic chimneys.
13. If a hood, shield, or screening is needed to protect the flue from moisture and/or birds, select a low-profile element that will provide the necessary protection while providing only a minimal visual presence. Only elements that will be visible require approval.
14. If a severely deteriorated chimney must be replaced, rebuild it in the same design, with the same masonry and joint detailing as the original.

Maintenance Recommendations
• Repoint brick chimneys using mortar that matches the composition, color, and detailing of the existing.
• Clean chimney flues on a regular basis if the flue is in use.
• Brick chimney caps are subject to extreme weathering. As a result, they require frequent repainting.

The St. James’ House on Charles Street features a complex roof with a mix of gambrel and gable roof forms, shed-roofed dormer windows, and prominent brick chimneys.
Gutters and Downspouts
15. Replacement gutters and downspouts should typically have a half-round profile rather than an ogee, “K,” square, or rectangular shape.
16. Make sure that new gutters and downspouts are of the appropriate size and scale. Larger gutters and downspouts may be needed when installed on roofs with large expanses of roof area to avoid overflow. Over time, this overflow can cause deterioration of the cornice and wall areas.
17. When installing gutters and downspouts, do not remove historic material from the building such as decorative cornice elements.

From top to bottom: a half-round gutter, K-style gutter, and box gutter. The half-round profile is typically most appropriate for use on historic structures.

Maintenance Recommendations
- Inspect the gutter system annually. Clean out existing gutters and downspouts, and provide ongoing maintenance to prevent blockages that may cause water retention and deterioration.
- Box or stop gutters catch water in a trough that is part or the roof or eave. Leaky box or stop gutters should be lined with membrane roofing.
- Suspended gutters are fastened at the eaves with spikes or straps. Loose downspout support brackets should be firmly reattached to the wall. Gutter support straps should be refastened under roofing materials and not on the roof surface.
- Ensure that gutters are installed with minimal slopes to ensure that water runs off and does not stand in the gutter. One-quarter inch per 10 feet of gutter is the minimum pitch to use.
I. STOREFRONTS

Storefronts are the focus of commercial buildings in the district. Often they clearly demonstrate the evolution of buildings over time and are likely to contain elements that have acquired historic significance over different periods of time.

For more information, please see the following NPS Preservation Brief:
Preservation Brief #11, Rehabilitating Historic Storefronts

1. Preserve all elements, materials, and features that are original to the building or are early remodeling projects that have become significant in their own right. These elements may include character-defining features such as cornices, windows and trim, storefront windows, doors, and bulkheads. Historic hardware such as hinges and door handles should also be retained where feasible.

2. Remove any non-historic, inappropriate elements, materials, signs, or canopies that were added later and obscure original architectural elements. Covering up windows, cornices, decorative features, or significant portions of the wall alters the building’s proportions and changes its appearance; these alterations should be removed if they are not historically significant.

3. If significant storefront features are uncovered in any careful exploratory demolition, assess their condition for preserving, repairing, or reconstructing.

4. Reconstruct missing elements (such as cornices, window frames, transoms, and bulkheads) with physical evidence and/or historic photos if available. Otherwise, design simplified new elements that respect the character, materials, and design of the building.

5. Avoid using or retaining materials and elements that are incompatible with the building or district. Depending on the style and age of the commercial building, these may include: unpainted aluminum-frame windows and doors, unpainted aluminum panels or display framing; reflective or tinted glass display windows; T1-11, vinyl or aluminum siding; EFIS (artificial stucco); wood shingles; false mansard roofs; metalawnings; coach lanterns; and plastic shutters, inoperable shutters, or shutters on windows where they never previously existed. Creating false historical appearances, like Colonial, Old English, or other themed storefront designs, is not appropriate for authentic historic buildings.

6. Do not remove non-original storefronts that may have become historically significant alterations within the history of the building. An example would be a complete storefront replacement from the early or mid-20th century that retains its design integrity. It is now an important historic and early change that should be preserved.

7. Window film applications that darken the appearance of the glass are not appropriate for display windows in the historic district.
Maintenance Recommendations

• Storefront windows are extremely vulnerable to weather because of their location and size, and require careful maintenance.
• Painting every three years is recommended to avoid cracking, warping, and rot.
• Sills, lintels, surrounds, and hoods—although they may be constructed of other materials such as brick, concrete, stone, or metal—will also fail if not properly maintained.

It is common for commercial buildings to display multiple periods of construction as storefronts were updated in the early to mid-20th century. These storefronts are generally considered to have acquired historic significance and elements should be retained and preserved.
CH. 4
Existing Buildings: Building Materials

A. Wood
B. Masonry: Brick & Stone
C. Stucco
D. Metal
E. Glass
F. Slate
G. Substitute & Imitative Materials
H. Paint

This chapter focuses on specific building materials which may be used to construct a variety of elements on historic structures. Traditional building materials are characterized by their durability, repairability, and variety of uses. Building materials addressed include wood, masonry, stucco, metal, glass, and slate, as well as substitute materials and painting.
REPAIR & REHABILITATION OF EXISTING BUILDINGS

A. Wood

The availability, flexibility, and low cost of wood has rendered it the most common building material in the United States through much of the country’s history. Wood was—and remains—the preferred material for framing, siding, windows and doors. Wood can be easily shaped, making it the preferred medium for a range of exterior details, such as columns, piers, trim, railings, brackets, modillion blocks, and dentils. It is also the preferred material for flooring, staircases, doors, mantels, trim, and other interior features. If not carefully maintained, exterior wood is subject to paint delamination and deterioration. The maintenance of a painted surface on exterior wood is essential to its preservation.

1. Retain historic wood features when present, as cladding material, decorative elements, or in other uses.
2. Rotting or missing elements or portions of elements should be repaired individually, instead of replacing the entire element.
3. Replace wood elements only when they are rotted or damaged beyond repair.
4. Use new or salvaged wood, epoxy consolidants, or epoxy fillers to patch, piece, or consolidate elements.
5. If an element must be replaced, match the original in design and materials.
6. The design of the replacement elements must be based on surviving physical or pictorial evidence from the building itself. Replacement elements should not be based on other buildings in the area, but rather should be specific to the building itself.
7. Do not use synthetic siding, such as vinyl or aluminum, over existing wood siding or as a replacement for wood siding.

Detail of beaded wood clapboards, a typical siding material.
Maintenance Recommendations

- Keep all surfaces primed and painted.
- Identify all sources of water penetration and address them.
- Maintain caulk joints to prevent water infiltration. Do not caulk under individual siding boards or window sills because this can seal the building too tightly and lead to moisture issues within the walls.
- Remove vegetation growing too close to wood elements and interfering with air circulation; damp wood is vulnerable to mildew and fungal growth and susceptible to rot.
- Repair any leaking roofs, gutters, downspouts, and flashing, as these are common sources of water infiltration into wood elements.
- Use appropriate treatments to repel pests that bore, consume, or nest in wood.
- Do not use high-pressure power washing to clean wood siding because the pressure can force moisture behind the siding.

Wood is one of the most prolific building materials, and is typically used for elements including siding, trim, windows, doors, and shutters.
B. Masonry

Historic masonry includes brick, stone, terra cotta, concrete, stucco, tile, and mortar. Brick is the most common masonry type in Fredericksburg. Masonry that exists in a deteriorated condition can introduce moisture, insects, and vegetation to the wall system and to the interior of the building. In order to correct these deficiencies, general masonry repair and repointing is required where deterioration occurs.

For more information, see the following NPS Preservation Briefs:
- Preservation Brief #1: Cleaning and Water-Repellent Treatments for Historic Masonry Buildings
- Preservation Brief #2: Repointing Mortar Joints in Historic Masonry Buildings
- Preservation Brief #6: Dangers of Abrasive Cleaning to Historic Buildings

1. Retain character-defining masonry features.
2. Do not paint unpainted masonry.
3. Repair or replace a masonry feature only when necessary. When replacing a missing feature, the replacement material should match the size, texture, color, and pattern of the original material, and the mortar joint should match the original joint size, tooling, and mortar hardness.
4. Historic mortar that is sound, exhibits no cracks, and remains appropriately adhered to the brick (historic mortar that has not failed and is still functioning properly) should be left in place. Repoint only areas where mortar has deteriorated.
5. Replacement mortar should be consistent with the materials removed in type, color, texture, joint width, profile, and hardness.
6. Do not use waterproof, water-repellent, or non-historic coatings on masonry unless they allow moisture to breathe through the masonry.

Sandstone, a very soft stone, is commonly used for steps and foundations in Fredericksburg. When the mortar used for repairs or repointing is harder than the stone itself, as in this example, its inability to flex results in damage to the stone.
Maintenance Recommendations:

- Prevent water from entering masonry walls by ensuring the ground slopes away from the wall.
- Prevent rainwater from entering masonry walls by ensuring that the roof is secure, flashing is maintained, and gutters and downspouts are working properly.
- Brick should only be cleaned when necessary to remove heavy paint buildup, heavy soiling, or graffiti. Avoid abrasives and clean using water at low pressure. Use mild detergents only when necessary. Any detergents or chemical cleaners should be tested in an inconspicuous area first.
- When repairing mortar, rake out existing deteriorated mortar by hand to a depth of two and one-half times the width of the existing joint or until sound mortar is reached.
- Do not attempt to remove inappropriate materials until they have weathered or cracked naturally, as removal of sound Portland-based cements often necessitates the use of power tools and can result in damage to the surrounding masonry units.
- The mortar of older brick buildings typically has higher sand and lime content than new buildings. Mixtures that are too high in Portland cement content will be too hard and will not allow the mortar to flex, leading to cracking, breaking, or spalling of the brick.
- While many types of stone are harder than brick and do not absorb water as readily, the mortar joints of stone are also subject to moisture infiltration and should be maintained with the same care.

This industrial building has been painted for much of its history. The coating should be maintained as removal could result in greater deterioration of the bricks; however, an appropriate vapor-permeable coating must be used.
C. Stucco

Stucco is a type of exterior plaster. It may be applied directly onto a masonry substrate, or on a wood substrate, with the use of wood or metal lath. Stucco surfaces can be finished in a great variety of treatments and textures, as is appropriate for the style and type of building on which it is applied. While stucco is a protective coating, it is highly susceptible to water infiltration, particularly when the substrate is damaged. Historically, stucco was often used as a repair coating, and as such, it may conceal unrepaired damage to the substrate. Stucco requires regular maintenance to remain in good condition.

For more information, see the following NPS Preservation Brief:
Preservation Brief #22: The Preservation and Repair of Historic Stucco

1. Do not remove historic stucco coatings. These may be original, or an alteration that has acquired historic significance.
2. Do not paint unpainted stucco.
3. Repair any underlying substrate damage before attempting any stucco repairs.
4. Repair only damaged areas of stucco by removing loose material and patching with new material that matches the existing in composition, strength, texture, and color.
5. Historic stucco may be tinted or pigmented; if this is the case, be sure to match the color or tint of the existing material.
6. When painting stucco, use properly formulated masonry silica stains so that the stucco can expel moisture.
7. If more than half of the surface area coated with stucco has lost its bond, it may be necessary to replace the entire area.

Maintenance Recommendations

• Prevent site water from entering stucco-coated walls by ensuring the ground slopes away from the wall.
• Prevent rainwater from entering stucco-coated walls by ensuring that the roof is secure, flashing is maintained, and gutters and downspouts are working properly.
• Periodically inspect stucco to check for cracks from settlement, vibration, or failure.
• Seal hairline cracks with a finish coat of stucco, paint, or whitewash.
• Stucco-coated walls should only be cleaned when necessary to remove heavy paint buildup, heavy soiling, or graffiti. Patch test any cleaning products and use the gentlest methods first, preferably a low-pressure water wash and soft bristle brush. Gentle detergents should only be introduced when necessary.
• Avoid the use of commercial caulks or other patching compounds. Due to differences in consistency and texture, these repairs can be highly visible and may cause damage to the historic material.
An example of a stucco finish applied to an existing historic building. This example displays a pebble-dashed and painted surface.
D. Metals

The 19th century saw the introduction of a great many metals into the U.S. building industry. Lead, tinplate, copper, iron (wrought and cast), steel, aluminum, nickel, bronze, brass, and galvanized sheet iron (steel coated with zinc) all became popular building materials. Metals appear throughout buildings, including as framing materials, roofing materials and details, railings, cornices, storefront elements, window frames, and hardware.

For more information, see the following NPS Preservation Brief:
Preservation Brief #27: The Maintenance and Repair of Architectural Cast Iron

1. Retain character-defining metal elements.
2. Deteriorated metal elements should be repaired or replaced in-kind as necessary.
3. If installing two adjoining, incompatible metals, a gasket should separate the different materials to prevent deterioration.
4. Aluminum, fiberglass, composites, or wood may be used to reconstruct missing elements if reconstruction of the original metal elements is not feasible.
5. Standing-seam metal roofs must have seams that are mechanically crimped on site rather than using seam caps.
Maintenance Recommendations
• Periodically inspect metal elements for signs of corrosion, mechanical damage, and connection failure.
• Prevent rainwater on metal elements by ensuring that the roof is secure, flashing is maintained, and gutters and downspouts are working properly.
• Maintain paint and protective coatings as a defense against weathering. Prior to repainting, remove loose and peeling paint with natural bristle brushes. Removing all paint to expose bare metal is not necessary, but all corrosion must be removed prior to repainting.
• Low-pressure, dry-grit blasting may be used to remove paint from cast iron and iron alloys if gentle means are not effective, but care should be taken to protect adjacent wood or masonry surfaces from grit.
• Copper, lead, and tin should not be sandblasted, but can be cleaned using appropriate chemicals or heat.
E. Glass

Various types of clear and decorative glass have historically been used in an array of techniques and applications to add visual interest to buildings both residential and commercial. From blown glass in the 18th century to plate glass storefronts in the 20th century, glass types and production techniques can aid in identifying architectural styles and dating building alterations, as well as providing distinctive character.

For more information, see the following NPS Preservation Briefs;
Preservation Brief #12: The Preservation of Historic Pigmented Structural Glass (Vitrolite and Carrara Glass)
Preservation Brief #33: The Preservation and Repair of Historic Stained and Leaded Glass

1. Retain original or historic window glazing.
2. Retain character-defining decorative or structural pigmented glass.
3. If necessary, replace glass with new glass that matches the original in color, thickness, and glazing method.
4. Remove wood panels or other coverings that conceal decorative glass, especially in storefront transoms.
5. If original glass in a transom has been removed, consider reinstalling reproduction glass with similar visual characteristics.
6. Repair rather than replace cracked structural glass panels. Small repairs can be made by using flexible caulk in a color that matches the historic glass.
7. If the historic glass is no longer manufactured or available for replacement, consolidate original materials to the most prominent location, and use substitute materials in less visible locations. Spandrel glass may be an acceptable substitute if the color, size, and reflectivity of the original materials can be matched.
F. Slate

Slate is a quarried stone and is a frequently used roofing material in Fredericksburg. It is an extremely durable material; a well-maintained slate roof, built with durable slates, can have a life expectancy in excess of 100 years.

For more information, see the following NPS Preservation Briefs:
Preservation Brief #4: Roofing for Historic Buildings
Preservation Brief #29: The Repair, Replacement, and Maintenance of Historic Slate Roofs

1. Retain and repair character-defining slate roofs.
2. Repair damaged or broken slates with slates of the same size, thickness, and color. Individual slates should be repaired rather than replacing the entire roof when feasible.
3. Repair failing flashing and attachments before replacing slates. Unless the slates are delaminating, they should be retained and the roof repaired.
4. Protect existing slate sections when making repairs to the roof and ensure that slate repairs are performed by an experienced roofer.
5. Artificial slates may only be considered on a case-by-case basis when the original material has deteriorated beyond repair. These should only be used on minimally visible roof surfaces or in areas where the texture and detail of real slate would be less visible.

Example of slate roofing found in the Historic District.
G. SUBSTITUTE MATERIALS

When and where to use substitute materials are decisions to be reached only after careful consideration for the consequences to an historic structure and not before more appropriate preservation options have been explored. The purpose of repairing damaged architectural features and of replacing lost or irreparable ones is to create a visual match to the original feature and to prevent further deterioration.

For more information, see the following NPS Preservation Briefs:
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors

When is the use of substitute materials appropriate?
The use of synthetic materials that will alter the appearance, proportion, and/or details of an historic structure is strongly discouraged. However, there are three generally accepted circumstances under which substitute materials may be appropriate and economical replacements:

• Unavailability of historic materials: The demise of a commercial quarry may lead a property owner to seek replacement stone from another quarry. If that source cannot produce an appropriate match, substitute materials such as dry-tamp cast stone or textured pre-cast concrete may be appropriate alternatives as long as the detail, color, and texture of the original stone are matched as closely as possible.

• Unavailability of skilled craftsmen: This is a problem particularly when working with ornamental features (i.e.: carved wood, carved stone, wrought iron, cast iron, or molded terra cotta) if the intent is to carry out an in-kind replacement. However, recent technological advances in the design and manufacturing of replacement pieces using aluminum, cast stone, fiberglass, polymer concrete, glass fiber, reinforced concrete, and terra cotta have greatly expanded the replacement options available and are considered acceptable if qualified craftsmen are not available.

• Replacement of poor quality original materials: The problems associated with the use of poor quality original materials can generally be remedied by in-kind replacement. If in-kind materials cannot be found, or are impractical, substitute materials can be used. For example, modern tin-coated steel roofing is much less durable than historic tin or terne iron, which is no longer available. Modern terne-coated stainless steel or lead-coated copper is a visually compatible roof material and is a viable alternative.

Many new products have not yet stood the test of time. Their ability to stand up to the extremes of weather is not fully known, and materials of traditional composition are generally the preferred choice. The rates of contraction and expansion of substitute materials can vary widely from the rates of the original materials; for this reason proper installation and anchoring are crucial. In most cases, substitute materials that are more pliant will be preferred to those that may be of stronger, but more rigid composition. Whenever possible, projects involving similar substitute materials in similar circumstances should be examined.
1. Vinyl and aluminum siding will not be approved as a replacement material or for use over existing wood siding on historic buildings.
 • Vinyl siding rarely lasts longer than 20 years and cannot be maintained. Over time, vinyl and aluminum siding may dent, warp, cup, become brittle, buckle, break, and fade, and that damage cannot be repaired. It is very difficult to match to existing vinyl and aluminum siding, as factory colors, styles, and finishes change over time. Vinyl and aluminum siding are not designed to receive paint, so a paint coating cannot generally be applied to blend repairs.
2. When possible, remove existing synthetic siding and restore original wood siding. By revealing the original wood siding material, concealed damage to the building frame may become visible, and offer the opportunity for repair.
3. Cementitious or composite siding materials may be considered on a case-by-case basis for additions to historic buildings and new construction. These materials should not be used on the primary elevations of historic buildings and will not be approved as replacements for irreparable wood siding.
4. Cementitious or composite materials must have a smooth surface; artificial grain is not appropriate for use on historic buildings.
5. Cementitious or composite siding should not be mixed in with wood siding. In some circumstances, this type of siding may be approved for use at the base of a wall to mitigate the absorption of ground water or splash back into the wall system.
6. Composite materials must be able to be cut, shaped, and painted just like wood.
7. When wood features such as trim, porch details, and other decorative elements are damaged beyond repair, composite replacements may be approved on a case-by-case basis for historic buildings if they carefully replicate the dimension, shape, texture, color, and overall appearance of the original wood elements.

Vinyl and aluminum sidings have a distinctly different appearance from traditional wood siding and are not recommended for use.
H. Paint

Maintaining the painted surfaces of historic buildings is essential to their longevity. Paint is nearly always used on wood elements such as trim, windows, doors, and siding, and protects those elements from the damaging effects of weather. Maintaining painted surfaces on metal elements, such as roofing, window frames, storefronts, and railings, is essential to their preservation as well. Paint colors do not require review by the ARB.

For more information, see the following NPS Preservation Brief:
Preservation Brief #10: Exterior Paint Problems on Historic Woodwork

1. Do not apply paint or other coatings to unpainted masonry, stucco, metal, or other traditionally unpainted materials.
2. Use appropriate surface preparation and application techniques for any painting project.

Maintenance Recommendations

Paint is designed as a sacrificial layer that protects woodwork from natural weathering and associated deterioration. When properly applied, paint has a lifespan of up to eight years. When inappropriately applied, or when it has reached the end of its functional life, paint will peel, crack, flake, and alligator. These fissures allow moisture to penetrate and support biological growth, and contribute to the deterioration of the surface beneath. Paint should be appropriate to the structure in type, and should allow the structure to breathe.

- Unpainted wood can begin deteriorating within two months of exposure to sunlight; end grain is more susceptible to water damage than the other surfaces.
- Maintain all painted surfaces by a regular repainting program.
- Caulk any cracks and joints around other elements such as doors, entrances, and trim. Do not caulk siding joints; caulking siding will cause moisture to build up between the siding and the wall assembly.
- Maintain painted surfaces on metal roofs and clean annually to extend the life of the finish.
- Painting existing standing-seam metal roofs requires some additional steps to ensure proper preparation, cleaning, and application of new paint.
This detail of clapboards under rehabilitation shows both the layers of paint found on this particular building and also some of the underlying damage that is revealed when paint is removed.
A. **Fences and Walls**
B. **Lighting**
C. **Outbuildings, Garages, & Other Accessory Structures**
D. **Decks**
E. **Site Appurtenances**
F. **Parking**

This section provides guidance for site elements and all structures that may be an accessory to the primary residence or commercial building on a site. These minor elements, when taken together, can have a substantial impact on the overall character of a property and the district. These site features can define the relationship between a building and the street or its neighbors and may be considered an important part of any project.
SITE, SIGNS, ACCESSIBILITY, AND ENERGY CONSERVATION
A. FENCES & WALLS

Fences and walls must be in character with those found in the district while providing the desired level of privacy, screening, or security. Fences and walls exist in a great variety of materials, styles, and types throughout the district and they can be prominent site features. Fences in Fredericksburg must comply with City Code §72-56 as well as the guidelines here.

1. Retain any existing historic fences and walls. These should not be removed or replaced with contemporary features.
2. Replace deteriorated historic fences by matching the material, height, and detail of the existing. When this is not possible, use a simplified design of similar materials and height. Where fence sections or pieces are missing, design replacements to blend with the old in material, height, and detail, and consolidate original fencing into the most prominent site location.
3. Proposed new street-front fences, walls, and gates should be compatible with the historic structure in design, materials, and location.
4. Fence and wall materials and design should relate to those found in the neighborhood. In general, fences and walls should be constructed of wood, masonry, iron, or painted/coated aluminum. Composites may only be considered if the material is paintable and has a smooth finish. New designs should seek simplicity rather than elaboration.
5. Chain-link fences, split-rail fences, concrete block walls, and vinyl/PVC fences are not appropriate for use in the Historic District.
6. Fences and walls may be constructed on the property line or anywhere on the property; however, avoid creating areas that are inaccessible for maintenance or prone to overgrowth.

Wood privacy fences are most appropriate for use in the rear yard and it is generally recommended that the finished side of the fence face toward the street.
SITE, SIGNS, ACCESSIBILITY, AND ENERGY CONSERVATION

Brick, parged concrete, wrought iron, and painted aluminum are all commonly seen and are appropriate fence and wall materials.

Maintenance Recommendations

- Paint and repair iron/metal fences on a regular basis or as needed.
- Repoint masonry walls as needed, being careful to match mortar to the existing, including composition, hardness, texture, and color, and width, depth, and strike pattern (if there is one) of the existing mortar joint. Bricks and mortar need to be of the same relative hardness, so that when they expand and contract during freeze/thaw cycles, they do so at the same rates and do not damage each other.
- Replace missing stones or bricks with stones or bricks that match the existing as closely as possible. Replacement brick should match the existing in dimension, color, texture, and hardness.
- Wood fences should be kept well-painted to ensure longevity. Pressure-treated wood will need to weather for a period of time prior to painting.
- When repairing wood fences, match the existing design when replacing component parts.
- Keep vegetated fence lines trimmed and free from weeds and trees that may uproot or damage the fence.
B. Lighting

Exterior building and site lighting must balance character that aligns with the district context with the desired level of security and convenience. All lighting must comply with City Code §72-58 in addition to the guidelines. Lighting of residential and commercial properties generally includes exterior lights on buildings, minimal lights on walkways and in garden areas, and utilitarian lighting at accessory buildings. The City encourages dark sky practices concerning site lighting.

1. Retain any historic lighting fixtures.
2. Repair and refurbish historic light fixtures when possible.
3. Replace a historic light fixture only when parts for the existing fixture can no longer be found or replicated.
4. Use fixtures that are compatible with the character of the historic building and the surrounding area.
5. New lighting fixtures should be based on historic precedents specific to the site. In cases where there is no precedent for a historic lighting design, unobtrusive and minimal contemporary design that does not detract from the character of the district is preferred.
6. The placement of lighting fixtures should correspond with architectural features of the building and not obscure any distinctive characteristics.
7. Use full cut-off shields and bulbs that eliminate glare and spillover to other properties.
8. Site lighting for buildings and sites must be compatible with the district. While vehicular lighting should be differentiated in height and intensity from pedestrian lighting, both should support and reinforce the character of the district.
9. Avoid bright security lighting mounted at eave heights of buildings that is not shielded.
10. Parking areas and building lighting on commercial properties should have shielded lighting sources that adequately light the lot and pedestrian paths. Lighting fixtures should not be mounted higher than 24 feet.
11. When using LED lights, it is recommended that applicants achieve a warm white tone, generally 2500-3500K color temperature.

Lighting adjacent to entryways is typical for both residential and commercial buildings.
Fixtures with a contemporary design can be considered appropriate for use when they are incorporated sensitively into the building’s design.

Where historic fixtures remain, they should be repaired and kept in use.
C. OUTBUILDINGS, GARAGES, & OTHER ACCESSORY STRUCTURES

New outbuildings, garages, or other accessory structures should be compatible with the design and material treatment of the primary building they support while adding functionality to the property. These structures must be clearly secondary in nature and must additionally comply with City Code §72-42.

1. Retain and repair historic outbuildings.
2. Outbuildings, including garages, sheds, gazebos and other accessory structures, should be compatible with the design of the primary building on the site. This includes such elements as roof slope and materials selection.
3. Newly constructed outbuildings such as detached garages or tool sheds should respect the siting, massing, roof profiles, and materials of existing outbuildings in the neighborhood.
4. New outbuildings should be smaller than the primary building. In keeping with §72-42, the footprint of new outbuildings should be no more than 25% of the heated floor area of the primary building on the site.
5. New outbuildings should be located to the rear and/or side of the property to emphasize their secondary status.
6. Prefabricated yard structures are discouraged. Although screening may be considered as a mitigating factor for the installation of these structures, they will still be reviewed for compatibility.
7. Accessory structures must meet the same material standards as other buildings in the district and should generally be constructed of wood, metal, or masonry. Composite materials with smooth finishes and paintable surfaces will be considered on a case-by-case basis. Vinyl and T1-11 siding or trim is not appropriate for use.

A pergola located in the rear yard is constructed of wood and does not impact any historic features of the site.

This outbuilding matches the construction details of the residence on the property.
D. Decks

Exterior decking is a late 20th-century addition to residential architecture. Suburban in origin, decks are an anomaly in many older neighborhoods. As owners of historic homes may want to enjoy the benefits of outdoor living, guidelines for the design and installation of decks are provided.

1. New decks should be sited in rear yards and gardens that have limited visibility from the public right-of-way.
2. Decks should not alter, damage or destroy significant site elements of the property.
3. Decks should complement the architectural features of the main structure without creating a false historical appearance. Decks should be painted or stained.
4. Deck design may include vertical picket balustrades or contemporary railing that is in scale with the house and the deck.
5. Sub-decking should be screened with wood lattice work or with brick piers.
6. As is the case with all other auxiliary structures, decks cannot be constructed in front yards.
7. Composite materials may be used for decking or surfaces with limited visibility, but are not appropriate for railings, facings, or other visible components.

This deck is located on the side of a residence, but is set behind the portion of the structure that faces the street.
E. Site Appurtenances

Site appurtenances such as HVAC equipment, communications equipment, and garbage enclosures are recognized as utilitarian and necessary, but since the design of the individual element is subject to mass production (with no modification), this section focuses upon sympathetic siting and screening rather than design. The visual impact of new mechanical equipment should be minimized to protect the historic character of the district.

HVAC Equipment
1. New units should be placed in side or rear yards to minimize any visual impact. Side yard units should be set back as far from the front of the building as possible.
2. Rooftop units should be located so that they are minimally visible from the public right-of-way. Fencing or screening is required where units will be visible.
3. HVAC equipment installed on the ground should be appropriately screened with fencing or vegetation.
4. Exhaust vents or fans should be installed where their visibility is minimized and has the least impact on historic materials.
5. For commercial buildings with limited site space, place mechanical units on sections of the roof that are not visible from public rights-of-way if possible, and screen the units as necessary.

Communications Equipment
6. Satellite equipment should not be located at the front of a building; equipment should be located in the least visually obtrusive location on the property.
7. The smallest available equipment should be selected.
8. If satellite dishes must be attached to a building, they should be attached in a way that is easily reversible and avoids damage to historic building material. Attachment to historic masonry is specifically discouraged. If necessary, attachments should be made through the mortar joints, not the bricks themselves.
9. Cell antennae should be collocated whenever possible.
10. Locations for cell antennae should prioritize locations in existing towers, or adjacent to existing chimneys, to provide screening.

Waste and Storage Areas
11. Outdoor storage or refuse collection areas must be fully screened from the public right-of-way.
12. For commercial properties, a masonry enclosure of brick, stone, or stucco is recommended for screening such areas.

Wood fencing used to screen ground-located HVAC equipment along a residence’s side elevation.
F. PARKING
The location of parking areas is considered as a component of overall site planning. Off-street parking, while necessary, can be controversial because of its physical and visual impact on a historic site. Parking should be provided in a way that reinforces the existing rhythm and visual aspects of a neighborhood rather than being an obtrusive and incompatible break in the streetscape.

1. New commercial buildings should restrict parking to the rear of the building, allowing the building to become part of the existing streetscape and to reinforce the street edge. Locating parking to the side of the building may be appropriate in certain circumstances, depending on topography and other site conditions.
2. Parking in residential areas should be limited to driveways, with parking areas to the side and rear of buildings.
3. Street-facing attached garages are not permitted.
4. Parking areas should be screened using fencing or plantings so that parking areas are not dominant visual features of a property.

A driveway located to the side of this residential property leading to a rear garage has minimal impact on the historic streetscape.
CH. 6
Signs & Murals

A. Signs
B. Murals

Signs are an essential element of commercial areas. Well-designed signs can enhance the vitality of any commercial setting by creating visual interest along the street. They are regulated, however, to avoid clutter and inefficiency. Well-designed signage in the Historic District can help to bring unity to what could otherwise be chaotic visual diversity, by finding a balance between an individual business' need to attract attention and the overall impact of the commercial area. This allows customers to find what they are looking for without being visually overwhelmed.
A. Signs

Designs for signage in the Historic District should reflect the pedestrian scale of its historic resources. Signs should be modest in size and addressed to pedestrians and slower vehicular traffic. Sign size restrictions are imposed by the Unified Development Ordinance (see City Code §72-59), and cannot be modified by the ARB. To maximize effectiveness, every sign should be an integral, but noticeable, part of its building. In accordance with the need for free speech, the content of signs is not regulated, but consideration is given to placement, materials, lighting, and installation methods.

1. Signs must be designed to fit the architecture of the building and must not obstruct important architectural elements or details.
2. The number of signs should be compatible with the building and should not cause visual clutter.
3. The size of each sign and the total area of signs should match the character of the building and of the Historic District. Exact sign allowance must be verified with the Planning Office.
4. Signs should be located in traditional sign placement areas (cornice, sign-bands, transoms, display windows, etc.).
5. Signs should be constructed of traditional materials including wood, metal, glass, raised individual letters, and painted letters on wood or glass. Newer materials such as high density urethane, composites, or other synthetic materials may be appropriate for use as well.
6. Signs must be professionally designed and executed.
7. Projecting signs must be mounted to provide at least eight feet of clearance between the sidewalk and the bottom of the sign, and can project no more than 42 inches from the face of the building.
8. Signs must be attached through the mortar joints of masonry buildings and not through the face of the brick or stone.
9. Signs should be lit using exterior lights directed on to the face of the sign, rather than internal illumination. Internal illumination may be considered on a case-by-case basis where lighting is directed only through lettering and graphics rather than through the sign’s background.
10. Animation, flashing or moving lights, and electronic variable message signs are not permitted.
11. When using LED lights, it is recommended that applicants achieve a warm white tone, generally 2500-3500K color temperature.

This building displays a traditional use of the storefront entablature with individual letters mounted to the surface.
Sign Types

Building-mounted signs
Building-mounted signs consist of a sign panel or individual letters attached to a wall or storefront cornice. They can also include lettering painted on the building’s entablature, an architectural feature designed to accommodate signs. Flat wall signs may be applied directly to a building façade when a storefront cornice is not present. Flat wall signs should be designed to enhance the facade by blending with the architectural features of the building.

Projecting signs
Projecting wall signs may be made of wood or metal, may be hung from brackets or otherwise mounted in order to hang perpendicular to the building face, and should not obscure the storefront display area.

Awning signs
Awning signs are signs that have been painted or sewn onto the fabric of an awning, typically on the front or side of the awning valance. Refer to chapter 3-F for guidance on incorporating awnings into building elevations.

Window signs
Window signs can be painted on or affixed to a display window or glass entry door.

Banner signs
The ARB does not review temporary banners, but the City has specific size and timing rules associated with them. A temporary sign permit is required for the use of banner signs within the district.

Freestanding signs
Freestanding signs are mounted on posts or other supports and are designed primarily to attract motorists.
B. Murals
While in many ways similar to signs painted on walls, murals should be treated differently. Murals are artistic in nature, and should not contain information advertising goods or services provided by a business, whether located within the building on which the mural appears or elsewhere. As such, and with respect to the First Amendment, the guidelines seek only to guide the media used, their execution, and the means of attachment to the building. Applicants are strongly encouraged to consider designs unique to Fredericksburg. Murals placed on existing painted surfaces do not requireARB review.

1. Murals must be painted on previously-painted surfaces or on removable material attached to the wall and should not result in irreparable damage to historic materials.
2. Murals painted on removable material should be installed on framing that allows water to weep between the material and the wall.
3. Murals should not obscure or distort the historic features of a building.

A mural located on the side wall of the building at 801 Caroline Street.
A mural located on the side wall of the building at 921 Caroline Street, visible from Sophia Street.
The Americans with Disabilities Act (ADA) of 1990 mandates that all properties open to the public, whether historic or not, must be made accessible to people with physical disabilities. With careful planning, consultation, and design, most historic properties can be adapted for accessibility without jeopardizing the building’s architectural integrity.
SITE, SIGNS, ACCESSIBILITY, AND ENERGY CONSERVATION
A. ACCESSIBILITY

The ARB is committed to finding ways to make historic buildings accessible to everyone without sacrificing the qualities that make them historic. Solutions should be tailored to the specific characteristics of each individual building or property.

For more information, see the following NPS Preservation Brief:
Preservation Brief #32: Making Historic Properties Accessible

General
1. As a general rule, accessibility means that everyone—regardless of ability—should be able to access the building by means of the same circulation route. Accessibility to any given structure must be from one (or all three) of the following: 1) public street, 2) parking lot, or 3) sidewalk.
2. The distance between the access point and the destination should be as short as possible.
3. If the application of these criteria results in a substantial alteration to a primary entrance, the resulting change should be designed in such a way as to minimize any negative impact of the new feature on the historic structure.
4. The design of handrails should be as simple and unobtrusive as possible. In many cases, a supplementary rail can be as simple as a metal rail, often painted or finished black, to provide a safe, secure, yet unobtrusive handrail.

Retrofitting Doors
5. Historic doors should not be replaced, nor should door frames on primary entrances be widened.
6. If it is necessary to widen a door opening, existing side or rear doors should be widened, rather than primary entrances.
7. When it is not feasible to modify an existing entrance, a new entrance may be made, or an existing opening may be altered to create a new entrance.

Grading
8. Regrading is appropriate in cases where the change in elevation between an existing slope and a step or steps is not great and meets ADA requirements.
9. Appropriate regrading efforts may cover, but not remove or eliminate, original masonry steps.

Ramps
10. Permanent ramps should be designed in such a way as to complement the existing architectural elements of a structure.
11. Ramps should be located to minimize the potential loss to historic features such as porch railings, steps, and windows, and should preserve the overall historic setting and character of the property.
12. Every effort should be made to design the ramp using material and design elements that are compatible with the structure.
13. Removable or portable ramps are sometimes preferable because they are less likely to alter any significant features of an historic building than permanent ramps.

Mechanical Lifts
14. In cases where ramps or lifts are not feasible, other options should be fully explored and rejected before proceeding with the mechanical lift option.
15. Platform lifts and inclined stair lifts are most often used in instances where there is not enough room for a ramp, or in cases where the significance of a building does not warrant the permanent addition of a ramp. Often these devices accommodate only one person at a time, require frequent maintenance, and may not be able to be operated independently.
Ramps can be designed to be easily removed at a later point in time without resulting in any permanent alterations to the historic building.
CH. 8
Energy Conservation

A. Energy Efficiency

The retention, maintenance, and adaptive reuse of historic buildings and neighborhoods both preserves and honors the energy expended in their construction. The City of Fredericksburg supports the preservation of historic buildings as part of its commitment to energy efficiency and sustainability. Building envelope upgrades, such as air-sealing and insulating attics and crawlspaces, are measures that can improve the efficiency of an HVAC system, adding comfort and saving money over time. Rain barrels can capture stormwater runoff for use on lawns and gardens, reduce water bills, and improve the quality of waterways. Solar panels on the roof of a home, business, or garage lead to less reliance on public utilities and reduced electric bills. Grants, tax credits, and other incentives may be available. There is also a recapture period for clean energy (the time required for the cost to be offset by the cumulative effect of lower energy bills in the future).
A. Energy Efficiency

The ARB is committed to finding ways to make historic buildings more energy efficient, and open to alternative energy sources such as solar power, without sacrificing the qualities that make them historic.

For more information, see the following NPS Preservation Brief:
Preservation Brief #3: Conserving Energy in Historic Buildings.

General
1. Thermal efficiency should first be enhanced through the use of weather stripping, storm windows, caulking, interior shades, shutters, blinds, and awnings, if appropriate.
2. Do not replace multi-paned sash windows with new thermal sash windows that use false muntins.
3. Do not replace windows or transoms with fixed thermal glazing.
4. Do not use tinted or reflective glass as an exterior façade treatment.
5. Conduct an energy audit to evaluate a building’s energy assets and liabilities. The auditor inspects for obvious energy leaks as well as any health and safety risks that may be involved. The auditor will also check for air tightness, duct tightness, and combustion appliance airflow and efficiency. The audit should lead to a scope of work for any remediation as well as an estimate of its cost effectiveness. A final inspection will confirm whether the measures taken are Department of Energy-compliant. When selecting an auditor, make sure that they hold a Virginia Residential Building Energy Analyst license.
6. Porch enclosures to aid in energy conservation are only appropriate on secondary building faces. Solid materials are not recommended for use in enclosure projects since they can radically alter the historic appearance of a porch. Glass enclosures which reveal decorative porch elements are strongly preferred.
7. The use of awnings on commercial or residential structures should enhance the individual building on which such coverings are placed as well as the surrounding neighborhood or commercial area. Awnings can cover over inappropriate remodeling or transom areas, protect pedestrians from inclement weather, protect window displays from sunlight and aid in energy conservation.

The new metal roof in this image also contains photovoltaic cells, and collects solar energy for use in the building.
Solar Energy

8. Proposals for installation of renewable energy structures must be based on a hierarchy of preferred locations, beginning with roofs not visible from the public right-of-way.

9. Any proposal involving equipment that will be visible from the public right-of-way must include justification for placement in these locations.

10. Character-defining elements of the building must not be obscured or damaged by installation.

11. Installations must be specific to the energy needs of the individual building. Structures and equipment designed to generate more energy than may reasonably be used by the residents of the individual building, or designed specifically to generate energy for sale, will not be approved.

12. Solar panels installed on pitched roofs shall run parallel to the roofline, and not rise above the roof peak.

13. Solar arrays installed on roofs shall be set back from the parapet or roof edge to remove them from public view, and set back at least 6 inches from the eave.

14. While energy collection equipment will generally project to some degree, the projection should be minimized, wherever possible.

Roof-mounted solar panels should be low-profile, matching the slope of the roof, and should be minimally visible.
CH. 9
New Construction & Additions

A. Site Planning: Setback, Spacing, & Orientation
B. Building Massing: Complexity of Form & Directional Expression
C. Building Scale: Height & Width
D. Roof Form & Materials
E. Door & Window Types & Patterns
F. Storefronts
G. Porches, Porticoes, & Balconies
H. Foundations
I. Materials & Textures
J. Architectural Details & Decorative Features
K. Lighting
L. Additions

This section provides guidance for new construction and additions. The intent is to help the applicant approach the design of new buildings and additions to existing buildings in a way that is sensitive to adjacent historic buildings, and supports the overall character of the Historic District. While additions and new construction can be either historic or contemporary in design, the overall intent is that the new work be a good neighbor, and support the existing buildings that surround the new construction, or to which the addition is to be attached.
A. SITE PLANNING: SETBACK, SPACING, & ORIENTATION

Individual buildings are part of a larger whole, and the synergy created by the collection of individual buildings is what generates the “sense of place” that is captured by historic districts. New buildings should be sited to maintain the rhythm of recurrent building masses and the spaces between them as much as possible. The setback, spacing, and orientation should reinforce the character of the street on which the new building is to be located. The context for review begins with the building and its immediate neighbors, and expands to include the surrounding buildings on the block face and across the street (within the district).

Setback

The street edge provides a strong neighborhood pattern and is established and maintained by consistent spacing (setback) between the buildings and the property line adjacent to the street. In modern neighborhoods, the zoning ordinance defines the required setback, but in historic neighborhoods a pattern was established long before zoning was enacted. Earlier homes on lower Caroline Street, for example, have a greater setback than later homes built on lower Princess Anne Street. Commercial structures along Caroline and William Streets have a uniform setback that produces a corridor type of streetscape. In these and similar instances, the zoning ordinance allows new construction to be sited in accordance with the yard pattern already established by the existing buildings. For more information on setbacks in the Historic District, see City Code § 72-34.1(D).

This diagram depicts several ways to approach the alignment of setbacks in areas of residential-style buildings. Alignment should be made with the front of the building itself, not a porch, if one exists. Both front and side setbacks should be consistent with neighboring buildings to ensure a consistent pattern.
1. Infill construction should respect the prevailing front and side yard setback patterns of the surrounding block. The minimum setbacks evident in most districts reinforce the traditional street wall. In cases where the adjacent buildings have varied setbacks, the setback for the new building should be based on the historical pattern for the block.

2. For sites that serve as a transition between areas with different setbacks, the setback of a new building should also serve a transitional function.

3. When the ARB finds that there are unique site conditions, historic features, or other unusual circumstances specific to the property that are not common to the general Historic District, the ARB may approve a setback that varies from the established pattern.

4. Consideration should be given to the addition of fences, walls, or other site elements as a means of reinforcing the traditional street edge if a setback larger than the street pattern is warranted.

Special Considerations for Corner Properties

5. Corner buildings should avoid deep setbacks or open corners that disrupt street edge continuity.
Spacing
Side yard setbacks, or consistent spacing between buildings, establishes a rhythm along a street. This spacing often depends on lot and building sizes. As with street edge setbacks, in historic neighborhoods, the pattern of side yards was established long before zoning. Downtown Fredericksburg, for instance, consists of closely-spaced buildings that provide a denser rhythm than the more open rhythm found in suburban residential areas. In both of these instances, the zoning ordinance allows new construction to be sited in accordance with the yard pattern already established by the existing buildings.

6. While side yard spacing varies enormously throughout the Historic District, new residential-style buildings should reflect the average spacing of neighboring dwellings.
7. Spacing between new buildings in the downtown commercial district should reinforce the existing street wall and the pedestrian scale of the area.

Orientation
The location of entrances and the focus of architectural detailing reinforces the relationship of a building to the street and creates patterns of use that enliven the streetscape.

8. New construction should reinforce the street edge on which the building is located.
9. New buildings should always be oriented to face the most prominent street bordering the site.
10. Parking areas should be located to the side or rear of residential structures.
11. Parking areas must be located to the rear of commercial structures wherever possible. Wherever the ARB finds that parking areas cannot be accommodated to the rear and are proposed to the side of commercial structures, screening or other site features should be incorporated to ensure a consistent street wall.
12. For corner properties, the primary entrance should always face the most prominent street. Entrances should be provided on both street-facing facades to ensure street-level activity. The secondary entrance should be less visually prominent than the primary entrance.

New buildings should respect the spacing and orientation of buildings in the surrounding context, which typically exhibit a clear pattern.
In the commercial core, buildings either adjoin or are placed very close together, with no setback from the public sidewalk. The regular pattern of pedestrian entrances and building variation creates an urban character and defines the area’s human scale.
B. Building Massing: Form & Directional Expression

A building’s form can be composed of simple shapes and masses or constructed of a more complex configuration. The overall organization of a building’s shape, massing, relative size, and the directional character of these components creates a relationship with the street and neighboring buildings. The context for review of building massing and directional expression begins with the building and its immediate neighbors, and expands to include the surrounding buildings on the block face and across the street (within the district).

The form and mass of a new building must be consistent with its neighbors. This includes the overall shape, the rhythm of windows, and available open space. The directional character of the facade is defined as a structure’s shape, placement of openings, and architectural details that provide an overall horizontal, vertical, or non-directional character. The proportion of a building’s façade—the measured relationship between the width and height of a building—should be compatible with that of the surrounding buildings on the block-face and across the street.

General

1. Building form should relate to the existing streetscape. If most of the building forms are simple, then the form of a new building should respect that characteristic. Consideration of building form includes massing, size, symmetry, proportions, projections, and roof shapes.
2. New construction should maintain the existing human scale of nearby historic construction in the district, especially at the ground floor. Particular attention should be paid to ensure that storefronts, entrances, and detail are scaled to the pedestrian who encounters the building on foot, and not in a passing automobile.
3. The orientation of new residential dwellings should be compatible with the neighboring houses on the block.
4. New residential construction and additions should incorporate human-scale elements such as cornices, porches, and front steps into their design.
5. New civic or institutional structures may have more complex forms reflective of the complexity and importance of their use, even if placed on a street with buildings comprised of simple forms.
6. For large-scale commercial or multi-family residential projects, parking within the building is strongly encouraged. Vehicle access doors should be located on secondary exterior walls. Parking demand is not considered a justification for increased scale and mass that is incompatible with the predominant scale and mass of the neighboring buildings.

Special Considerations for Corner Properties

7. Secondary facades of corner properties should reference massing similar to other corner locations in the historic district.
These two diagrams illustrate different ways to approach massing on a street where existing buildings are of a variety of heights, as is typical in the Fredericksburg. In each example, the new construction is divided into bays to correspond to the width of existing buildings on the street. The top diagram conceptualizes the new construction at a single height. The bottom diagram conceptualizes the new construction at the lowest existing building height found on the street, with a set-back rooftop addition that is taller than neighboring buildings.
C. BUILDING SCALE: HEIGHT & WIDTH

The scale of new construction (and its related architectural detail) must relate to the scale of construction already established. The context for review of building scale begins with the building and its immediate neighbors, and expands to include the surrounding buildings on the block-face and across the street (within the district).

The height and mass of a new building should be consistent with its neighbors. A building’s mass and its relationship to open space are also determinants of scale. Scale is created by the size of a building as it relates to a person, to its own location and site, and to neighboring buildings on the same block. Specific design features can further reinforce the human scale or emphasize that of the structure. In downtown Fredericksburg, with a few notable exceptions, most commercial buildings are two and three stories in height.

1. Building height at the street front should be compatible with the heights of surrounding buildings. A new building’s height should relate to the average height of existing adjacent structures. New buildings should be no greater than one story taller than neighboring historic buildings.
2. If new buildings are proposed to be more than one story taller than the neighboring historic buildings, the additional story should be stepped back so it is not visible from adjacent streets.
3. The cornice or eave height of new buildings should be compatible with that of adjacent historic buildings. Intermediate floor-to-floor heights should also be compatible with the adjacent buildings.
4. The primary facade of a new commercial building should be modulated with bays to reflect the prevailing width of the historic buildings on the same block.

A variety of building heights and roof types is typical in Fredericksburg. Contemporary design is encouraged for new construction, but buildings should be designed to match the height and width of existing historic structures.
5. New commercial construction should respect the vertical orientation typical of commercial buildings in Fredericksburg’s Historic District.

6. When designing new commercial buildings that occupy more than one third of a block-face, the design should employ bays as an organizational device, but the new building should read as a single piece of architecture, rather than as multiple buildings placed together.

7. The first story of commercial buildings typically features a taller floor-to-floor height than the upper floor or floors. The first story of new commercial buildings should reflect this characteristic. If there are adjacent buildings, the first floor height of the new building should match that of its neighbors.

Special Considerations for Corner Properties

8. New buildings that will contribute to two streetscapes should be designed to be compatible with both. While the building may have a principal facade and orientation, the secondary front should still contribute to the character of that street and relate to the neighboring structures.

While these buildings are of varying styles and were constructed at different points in time, each is modulated by bays in a way that creates a regular rhythm to the streetscape.
D. Roof Form & Materials

The type, shape, and material of a new building's roof must complement the roofs of neighboring structures. The shape of a roof helps to define a building's form, while the roof materials define its character.

1. Roofs of new dwellings should relate to those of neighboring historic buildings in type, materials, and complexity.
2. The roof pitch of new houses should reflect the steeper pitch of older dwellings rather than the shallow pitch of newer suburban-type houses.
3. Rooftop mechanical equipment should be located as discreetly as possible to limit visibility. Appropriate screening should be provided to conceal equipment from public view. When rooftop railings are required for seating areas or for safe access to mechanical equipment, the railings should be as unobtrusive as possible in order to minimize their appearance and visual impact on the surrounding district.

Special Considerations for Corner Properties

4. For corner properties, architectural elements should be employed that are typical of corner properties in Fredericksburg's Historic District.
5. The secondary facade should be treated as an architecturally important building face. Architectural elements used to achieve this include secondary entrances, porticos, and a regular rhythm of openings, where appropriate.

This corner property demonstrates both primary and secondary entrances. The primary entrances (in this case two: one to the storefront, the other to the residence) are more visually prominent than the side entrance. The deployment of the entrances and windows activates both the primary and secondary building walls.
E. Door & Window Types & Patterns

The size and proportion (ratio of width to height) of windows and doors must be similar to the openings of neighboring buildings.

1. The size, proportion, and spacing patterns of door and window openings in new construction should follow patterns established by historic buildings in the district. Windows on most commercial and residential properties throughout the district have a vertical orientation. Wide, horizontal, so-called “picture windows” on new construction are not appropriate, except in the context of large storefront windows.

2. The architectural appearance of original windows on existing historic buildings should be used as models for new windows. Sash, depth or reveal, muntin configuration, frame, and glazing profile should all reflect traditional window details. New glass should be clear without reflective coatings.

3. The size, proportion, and spacing patterns of doors and window openings on freestanding, new construction should be compatible with patterns established within the district.

4. When selecting new doors and door surrounds, keep in mind that leaded, beveled, or etched glass is rare in Fredericksburg’s Historic District; its use is strongly discouraged and rarely permitted. Similarly, stamped or molded fauxpaneled doors are inappropriate substitutes for historic door types.

5. Screen or storm doors should be simple, single-light or double-light styles that do not hide the features and detailing of the primary door.

Special Considerations for Corner Properties

6. Windows and doors on the secondary street-facing wall should be organized following the principles of the facade: windows should be proportioned appropriately, aligned vertically, and arranged as though designing a primary facade. Blank walls on street-facing corners are not appropriate.

These diagrams illustrate two of the most common door types: the six-panel, and the two-panel. Because of its simplicity, the two-panel design is a good choice when there is no information about the design of historic doors in a particular location.
F. STOREFRONTS

New commercial construction should utilize a storefront that is compatible with those found throughout the Historic District. This section is intended to apply to traditional two- or three-story commercial buildings, in which the bottom floor is utilized for commercial purposes, and the upper story or stories are utilized for residential use or less active commercial uses.

1. Historically, storefronts were defined by simple piers, large storefront windows, a cornice, a signboard and/or attached signage, and awnings. The new storefront should be compatible with other historic storefronts within the district.
2. Street-level storefront facades should not have blank walls and should be highly transparent.

Special Consideration for Corner Properties

3. For commercial corner properties, the use of architectural elements that are typical of similar historic properties should be used, including storefronts that turn the corner, and other similar treatments that treat the secondary street-facing wall as architecturally important. Blank walls are not appropriate.

An excellent example of a traditional storefront that also effectively turns the corner. In this case, the angled corner entry is flanked by large windows on both street-facing elevations.
G. Porches, Porticoes, & Balconies

The design of porches, porticos, and balconies must follow the examples set by buildings throughout Fredericksburg’s Historic District and should be utilized as a tool to maintain the human scale of the district. Porches and porticoes are important character-defining features of historic buildings that help to define the relationship to the street and give texture and detail to facades.

1. New construction should utilize porches and porticoes to shelter entrances following examples from the surrounding context to guide scale and design.
2. Porches and entrances should be of a depth that is similar to historic examples (typically eight feet or more).
3. Faux balconies (flat, applied constructs with no depth, sometimes referred to as “Juliette” balconies) are not appropriate. Small projecting balconies are acceptable.
4. New railings and balustrades should be modeled on historic examples or utilize simple contemporary designs. The use of stock elements or railings that do not utilize proportions similar to historic examples should not be used.

A small projecting balcony; unlike faux balconies, the doors can swing outward, and the balcony can be used.

G. Porches, Porticoes, & Balconies

Projecting front porches create a regular rhythm along residential streets and this pattern should be continued by any infill construction.
H. Foundations

New foundations must follow the patterns found in foundations throughout the district, with particular attention paid to height, detailing, and the materials used.

1. When masonry foundations are used, brick is preferred.
2. Foundation materials should be selected that are compatible with historic materials and consistent with properties within the district. If the foundation is parged, the parge coat must be opaque, and the coursing beneath must not be visible through the parge coat.
3. Heights should be kept to a level that will enhance, not detract from, the pedestrian experience. Particular attention should be paid to the height of foundations to create an appropriately scaled appearance that relates to neighboring structures and is consistent with neighboring properties.
4. If foundation heights must be taller than surrounding properties due to unique site conditions or construction requirements (for additional information on designing within floodplain districts, see chapter 11), additional detailing should be incorporated to create visual interest and entrances should have a clear connection to the street.

The residence in this photograph, under construction, is an example of the raised foundation required for construction in a floodplain. The foundation is opaque, and articulated on the facade.
I. **Materials & Textures**

The predominant building materials within an area—whether brick, stone, wood, or another material—should be incorporated, as practicable, when new construction occurs. New buildings should be made compatible with their surroundings, although the careful introduction of new materials is consistent with historic preservation goals to make visible the process of change.

1. Materials used in new construction should be visually compatible with original materials used throughout the surrounding neighborhood.
2. Vinyl, asphalt, and aluminum siding are not permitted.
3. Other synthetic siding materials with a smooth, non-textured finish and paintable surface may be allowed on a case-by-case basis considering visibility, location, and coordination with other materials.
4. Simplicity is encouraged where a variety of materials are proposed. Most historic buildings use a limited number of materials; this characteristic should be repeated by new buildings.
5. Materials should not be combined in ways that are overly complicated and not seen in neighboring historic buildings, and should not be deployed in such a way that makes it obvious that the materials used (such as brick and stone) are merely veneers.

Special Consideration for Corner Properties

6. The materials used for the primary facade should be continued along the secondary facade.

The new construction adjacent to this historic building utilizes brick of a similar color and size to the historic example, though it is clearly distinguished as a new structure.
J. Architectural Details & Decorative Features

The architectural details of new buildings—such as cornices, lintels, arches, ironwork, chimneys, etc.—should relate to neighboring historic buildings. New buildings should seek to incorporate architectural details that are influenced by Fredericksburg building traditions, though contemporary interpretations are appropriate. New buildings should not seek to simply recreate historic styles and details.

1. Architectural features, such as porches, entrances, storefronts, and other decorative elements, should be used to reinforce the human scale of the district.
2. New buildings should employ architectural details to add visual interest to facades, but should avoid combining disparate elements from a variety of architectural styles. Contemporary interpretations and details should be considered to help distinguish new construction from historic structures.

Special Considerations for Corner Properties

3. For commercial corner properties, the use of architectural elements that are typical of commercial corner properties in Fredericksburg’s Historic District is strongly encouraged, including sign bands that turn the corner, angled entries, and other similar treatments that treat the secondary facade as architecturally important.
K. Lighting

The use of minimal and unobtrusive lighting, rather than historic reproduction lighting, is encouraged for new construction. Other aspects of lighting, including intensity, shielding, and direction, are regulated by City Code §72-58. See also chapter 5-B.

1. For new construction, lighting should be minimal and unobtrusive, utilizing simple contemporary design. Its scale should relate to human scale and not be oversized. Historical reproduction lighting on new construction is strongly discouraged.

2. The locations of lighting fixtures should be incorporated into the overall architectural design and be reflective of historical patterns.

An example of a modern light fixture that is compatible with the historic character.
L. ADDITIONS

Building additions can allow for continued use of an historic property when it is determined that the needs of the occupant cannot be met by the existing spaces. Before a building is enlarged, the functions an addition is meant to address should be evaluated by the applicant to see if they can be accommodated within the existing structure. Additions must be subordinate to the original building, and complement the design of the building to which they are connected.

For more information, see the following NPS Preservation Brief:
Preservation Brief #14: New Exterior Additions to Historic Buildings: Preservation Concerns

1. Additions should be subordinate in size to the primary building and as inconspicuous as possible.
2. Locate additions to the rear or side of the original building.
3. Additions should not visually overpower the existing structure.
4. Careful attention must be paid where the roofs of additions interact with the roof of the building to which the addition is being made. The roofs of new additions should not interrupt or obscure significant characteristics of the existing roof.
5. To avoid compromising the integrity of historic buildings, additions should not be made to look older than they are. New construction should be differentiated from the old while still being compatible with the massing, scale, and architectural features of the original building. Replicas only confuse the importance of the original architecture.
6. Additions should be constructed so as not to impair the essential form and integrity of the original building.

Special Considerations for Corner Properties
7. A successful addition to a corner building will require the development of a secondary facade that continues or complements the material used on the original portion of the building, and include properly detailed and scaled windows and, in some cases, a door or doors. A blind wall facing a street on a corner addition will not be approved.

This diagram depicts three different ways to make an addition to a residence. The image on the left depicts symmetrical, subordinate additions; the image in the middle depicts a subordinate addition to the rear; and the image on the right depicts the same subordinate addition to the rear further separated by a small hyphen.
This corner building has a pair of subordinate additions; one located at the front of the building, and another along the side.

The diagram shows a variety of ways of conceptualizing a residential addition. In each case, the addition is made to the rear of the building. The additions are made to three different residential building plates: in the top row, the existing building axis extends to the rear; in the middle row, the existing building axis is parallel to the street; in the bottom row, the building axis is parallel to the street, but the building is wider.
In 2021, the City of Fredericksburg adopted an archaeological ordinance to incorporate the evaluation and protection of archaeological resources into the land development review processes. The study of archaeology allows for an understanding of history not available from any other source. The majority of recorded history—as well as many of the places designated “historically significant”—focuses on the lives and achievements of citizens of high social status or on well-known events. There are significant gaps in the understanding of the lives of ordinary people, especially groups that have been traditionally marginalized, and certain periods of history. Archaeology, in the investigation of daily life in a great variety of contexts, provides access to history beyond the scope of written record-keeping. Through the archaeological program, the City seeks to identify and protect these places in order to enhance Fredericksburg’s historical record and disseminate these discoveries to the public.
A. **Archaeological Investigation**

Through the archaeological program, the City will encourage the identification and recording of archaeological resources, the avoidance of identified sites where possible and, when sites cannot be avoided, the excavation and recovery of information. Avoidance is prioritized because this action preserves sites for future generations when technology and the ability to learn from these places has presumably advanced. When avoidance is not feasible, the goal is to extract information from the site through excavation and accompanying research. Once a site is disturbed, its information potential is permanently destroyed, so capturing this information through formal investigation is vital. The ordinance requires preliminary investigation of sites when planning for development, and this early investigation can allow developers to reduce costs by avoiding highly sensitive areas where possible.

The program is structured with the purpose of identifying and investigating archaeological resources in those areas of the City most likely to contain them. The ordinance references a predictive model created for the City, and requires evaluation and potential investigation of sites located in areas where this model indicates that archaeological resources are most likely present. Accounting for both the prehistoric and historic periods, the model essentially functions as a heat map. It is divided into a range of five probability levels: low, medium-low, medium, medium-high, and high. The ordinance includes regulations for identifying, investigating, and protecting areas in the medium-high and high probability zones in the course of land disturbance.
PLANNING FOR NEW CONSTRUCTION

For large-scale projects that require a major site plan:
For disturbance of 2500 square feet of land or more, preliminary archaeological survey is required. This preliminary survey (or Phase IA survey) must be submitted with the major site plan application for review by staff and the City’s on-call archaeological consultants. If survey indicates that a site or sites are present, options for treatment include avoidance and additional archaeological excavation. Excavation or avoidance will be carefully targeted based on the specific circumstances of the project through a memorandum of agreement, with the goal of coordinating any land disturbance to avoid both unnecessary damage to archaeological resources and excessive expense or delay.

For smaller projects that require a minor site plan:
For projects requiring a minor site plan (land disturbance less than 2500 square feet), residential lot grading plan, or certificate of appropriateness, the application will be evaluated administratively to determine archaeological impacts. If City staff, in consultation with professional archaeologists, determines that archaeological resources are likely to be impacted, the City will coordinate with the property owner to have professional archaeologists monitor the site during land disturbance. If archaeological resources are found, the City may take up to one week to further study the area before work proceeds.

A waiver of the archaeological requirements may be granted if one of the following criteria is met:
1. The property is shown as low, medium-low, or medium probability on the City’s predictive model;
2. The property has been previously graded or significantly disturbed; or
3. The development has been approved through the compliance process required by Section 106 of the National Historic Preservation Act.

The City’s predictive model was created after a citywide archaeological assessment was completed. Essentially a heat map, the model shows where archaeological resources are most likely to be found, with areas in red having the highest probability. The model can be viewed on the City’s publicly accessible GIS site.
Ideally, buildings should continue to function and operate under extreme conditions, including extreme temperature fluctuation, flooding, and other natural disasters. As the built environment faces the impending effects of global climate change, building owners, designers, and builders can design facilities to optimize building resilience.
A. Floodplain Design Considerations

In recent years, coastal and tidal waterway communities around the world have been affected by intensified flooding due to hurricanes, severe storms, and high tides. A United States Department of the Interior Memorandum dated November 18, 2019 states, "Changing weather patterns, stronger hurricanes, and other extreme weather events have increased the risk of flooding, both in terms of frequency and magnitude. Historic properties that have never flooded before are now exposed to this risk, and those that flooded infrequently in the past are experiencing more instances of flooding with water reaching higher levels than ever before." Existing buildings can be retrofitted by adding flood vents, elevating mechanical equipment, and taking other steps to protect the building in the event of a flood. Sustainable building concepts, building resilience, and community resilience are important principles to incorporate into the review of projects in the Historic District.

For more information, see the following:
NPS Guidelines on Flood Adaptation for Rehabilitating Historic Buildings

In instances where historic buildings and neighborhoods located in floodplain areas are at high risk of flood damage, the best policy for the long-term preservation of historic structures may indeed be elevation to FEMA requirements. Additionally, new construction is required to meet elevated building requirements for construction in a floodplain. All elevation projects must demonstrate that the building is in a FEMA Flood Zone and include a Flood Elevation Certificate defining Base Flood Elevation (BFE), or the elevation to which flood waters are anticipated to rise during the base flood (1-percent-annual chance) event as measured at the bottom of the lowest non-water-resistant, horizontal, structural member. For existing buildings, a structural engineer’s assessment of the building’s current condition and stability is recommended.
Projects that incorporate construction techniques to address floodplain requirements should take the following elements into consideration:

- Impact of the proposal on streetscape features (fences, walls, etc.).
- Impact on the relationship to adjacent buildings and the larger neighborhood.
- Impact on streetscape scale and building patterns.
- Impact on greenspace, trees, and landscape features.
- Relationship of the entrance to the street
- Staircases and stair configuration
- Railings and ironwork
- Foundation treatment
- Walls
- Fenestration (door and window opening) patterns
- Eave heights

This historic residence was originally designed to take advantage of an elevated site. The foundation detailing and entry stairs maintain a proportional appearance and clear relationship to the sidewalk.
Site Design
1. Buildings should remain in their original location on the lot unless doing so precludes the addition of necessary steps. Buildings should not be moved to accommodate additions, porches, parking, etc.
2. In unique situations, it may be acceptable to move buildings back on a lot to align with neighboring properties. If such a move is necessary, the impact should be minimized with existing porches, low walls, fencing, planting beds, and terraced landscaping in a manner that is in keeping with the building’s architectural style.
3. New or extended entry stairs should be consistent in design and material with the architectural style of the building.
4. Existing historic hardscape features (walls, fences, gates, etc.) should be maintained.
5. To the greatest extent possible, existing pathways from the street or sidewalk to the building should be maintained.
6. The use of plantings or other pervious materials to help absorb water is encouraged.

Foundation Design
7. Foundation design and materials should be based on the building’s original foundation, and should take into consideration neighborhood examples.
8. Foundation components, including pier infills (if proposed) should complement existing facade features.
9. New foundation material should match the historic foundation material or be compatible with existing foundations in the surrounding context. When building onto existing foundations, delineation between new and original is desired.

Examples of differing foundation treatments at adjacent properties. The elevated property maintains a clear relationship to the street and a proportional facade.
10. Any required flood venting should be limited to secondary walls (sides and rear of the house). If required by engineering, venting may be acceptable at the front of the house but must not detract from the historic elements of the building. Documentation will be required in order to support any such proposal.

11. Buildings should not be elevated more than required in order to accommodate parking under the structure.

Preservation and Architecture

12. Existing historic materials and details should be maintained as much as possible. If retention is not feasible, salvage and reuse, or rebuilding using in-kind materials may be permissible.

13. Proposals involving adjoined houses will be considered within the context of all affected buildings.

14. Chimneys should be retained and elevated with the building whenever possible. Any other proposal will require justification, including an engineering report and engineer’s recommendations.

15. Significant elevation changes without site adjustment or mitigation should create the appearance of an additional full floor that proportionally relates to the floors above and fenestration patterns on the streetscape.

Fredericksburg experienced several severe flood events in the 20th century, including the one shown here in 1942. Incorporating resilient design practices into historic buildings can help to ensure their longevity.
CH. 12
Relocation And Demolition

A. Relocation
B. Demolition

This section provides guidelines for relocation and demolition of historic resources within the Historic District. Such undertakings should be regarded as exceptional, and the ARB will exercise the utmost caution when reviewing requests of this nature. Relocation and demolition should only be undertaken as the last resort, and the ARB will require documentation of a good faith effort to seek other alternatives.
A. Relocation

The relocation of buildings or structures within the Historic District is subject to approval by the ARB. Relocation is an infrequently used option to save buildings at risk of demolition because of the costs involved and the potential adverse effects on adjacent historic properties. While relocation was once a commonly used option in Fredericksburg, the costs associated with this type of effort in the present day make such projects more difficult.

In reviewing requests for relocation, the ARB will consider the following criteria:

1. Will the proposed relocation have a detrimental effect on the structural soundness of the building? The logistical and technical challenges of moving an older building are considerable. If not executed properly, severe damage to the building can result. Original building materials may have to be replaced or altered in the subsequent rehabilitation.

2. Will the proposed relocation have a detrimental effect on other historic sites, buildings, or structures in the Historic District? Historic buildings or structures often derive a great deal of their significance from physical association with adjacent buildings, structures, or sites. Removal of one building in a block may seriously compromise the significance of the buildings that remain. Relocation may open up to view buildings or site elements (i.e. parking lots) visually incompatible with the remaining historic buildings.

3. Will the new site provide surroundings compatible with the architectural character of the relocated building or structure? Every attempt should be made to locate a receiving site that recreates as nearly as possible the orientation of the original site. Original topography should be taken into consideration, as well as setbacks and the location of any original outbuildings. Outbuildings and/or additions not original to the building or structure often are eliminated as part of relocation projects. Such elimination may have an adverse effect on a building or structure in its new placement. If the site is too small or oriented inappropriately with neighboring features and buildings, the qualities that made the building significant may be lost. If the building is located among buildings of a different architectural period or in an area zoned for uses incompatible with that building, the relocated building may look out of place.

4. Will the new site be located within the Historic District? If the site of a proposed relocation lies outside the boundaries of the Historic District, increased threats to the integrity of the relocated building may come from inappropriate alterations needed to fit the building on the new site.

Any proposal for relocation must include the following components:

- Contact the Virginia Department of Historic Resources to see if the building is listed on the Virginia Landmarks Register and/or the National Register of Historic Places. Although listing on these registers is entirely honorary, it should be noted that relocation generally results in removal of these designations, which will render the property ineligible for certain state and federal tax credits and other preservation incentives.

- Provide documentation confirming that relocation is the only practical means of saving the building or structure from demolition. Property owners should explore every option available, including adaptive reuse, alteration, or other redevelopment prior to concluding that relocation is the best way to preserve the building.
• Select a qualified contractor with experience in building relocation.
• Create a plan to secure the building from vandalism and inclement weather before, during, and after the move.
• Seek professional assistance in documenting the building. All documentation must be submitted to the ARB for review. Documentation should include interior and exterior photographs. A record of careful measurements of the building will be beneficial to any substantial reconstruction project once the building is moved.
• Obtain a professional structural analysis in order to minimize any damage that might occur during the relocation.

Preparing the Skipwith Cottage, Richmond, Va., for moving. The house has been raised onto cribbing to prepare it for transfer to a trailer for transporting it to its new site. An example of moving a historic building, which was once a common solution in Fredericksburg.
C. Demolition

In general, demolition is considered an option of last resort for historic properties, and it is only permitted under extreme circumstances. According to §72-23.1(D)(3)(a) of the Historic Preservation Ordinance: No historic landmark, building, or structure within the HFD shall be razed, demolished, or moved until the action is approved.

Under the provisions of the City Code, the ARB will not issue a Certificate of Appropriateness for demolition of any building or structure within the Historic District unless the applicant can show that there are no feasible alternatives to demolition or the Board determines that the building or structure does not contribute to the historic character of the district. The demolition of historic buildings and elements in the Historic District is strongly discouraged.

An on-site review by ARB members is required prior to any determination that a building or structure no longer presents an opportunity for feasible rehabilitation. As part of this process, a thorough structural analysis must be undertaken by a licensed structural engineer experienced in historic preservation work. Thorough documentation will be required of any building to be demolished; long-term neglect is not considered an adequate reason to demolish an existing building. City staff, HFFI, and other community partners may be able to direct property owners to resources to assist with maintenance and adaptive reuse.

The ARB uses seven criteria to evaluate requests for demolition:

1. The architectural significance of a building or structure. The ARB will assess whether the building is representative of a particular style/styles, prominent architect, or distinctly representative of a point in time in Fredericksburg due to its overall design characteristics.

2. The historical significance of a building or structure. The ARB will assess the building’s association with important events, individuals, patterns of development, or other characteristics of the Historic District and determine if the building or structure’s ability to represent that characteristic is unique and/or vital to the district.

3. Whether a building or structure is linked, historically or architecturally, to other buildings or structures, so that their concentration or continuity possesses greater significance than the particular building or structure individually. There may be instances when a property owner applies to the ARB for demolition of a building that is considered “historic” by virtue of the 50-year threshold, but the building design may be of such minor significance that the building is classified as non-contributing to the historic character of the District. If the building also meets one or more of the other criteria listed (i.e. if it is severely deteriorated, a source of blight or the demolition request will make way for new infill construction more appropriate to the Historic District, etc.), the ARB may vote to approve the demolition. As with all potential demolitions, however, each case is approved or rejected on its own merits. Some buildings in Fredericksburg do not necessarily rise to a high level of significance due to their individual merits or associations, but are instead representative of patterns, trends, or a series of works by an architect or builder. The loss of one element in a group may reduce the ability to interpret the whole and thus impact the overall character of the Historic District.

4. The significance of the building or structure or its proposed replacement in furthering the Comprehensive Plan’s goals. The City’s Comprehensive Plan prioritizes the preservation, rehabilitation, and adaptive reuse of Fredericksburg’s valuable architectural history. To the degree that proposed demolitions do not run counter to this goal, reasonable and objective consideration
may be given to such requests. When demolition requests are made in conjunction with designs for a replacement structure, the overall quality of the new design is an appropriate factor in determining the merits of demolition. The ARB may vote to approve demolition using detailed plans for appropriate, compatible infill construction as one factor in the decision. Conversely, a demolition request designed to accommodate the installation of an open parking lot with little or no screening would almost certainly be rejected. In most cases, a demolition permit will not be issued until the ARB has approved the design of a replacement structure.

5. The condition and structural integrity of the building or structure, as indicated by documentation prepared by a qualified professional or licensed contractor, or other information, provided to the board for examination. The City Manager may obtain an assessment from a qualified professional or licensed contractor to assist the ARB or City Council in rendering a decision. The ARB will assess the submitted documentation to determine if the building or structure has deteriorated beyond the point of feasible rehabilitation, or if it no longer possesses the features or characteristics that were representative of its significance.

6. Effect on surrounding properties. Individual buildings are significant contributing elements to the immediate area in which they are located. Removal of that building may have a positive effect on the neighborhood, but quite often demolitions have the opposite effect, producing a negative and irreversible impact to the streetscape. Since the ARB is charged with the preservation of the entire Historic District, and not just individual buildings and structures, adherence to these criteria is appropriate and justified.
7. **Inordinate hardship.** This inquiry is concerned primarily with the relationship between the cost of repairing a building or structure and its reasonable value after repair. An inordinate hardship is an instance when preservation will deprive the owner of reasonable economic use of the property. Any hardship created by action of the applicant—including any condition resulting from the applicant’s own neglect of the building or structure—shall not be considered in support of any application. To establish inordinate hardship under this section the applicant must submit evidence that rehabilitation of the building or structure is impractical, that the building or structure is inappropriate for the proposed use desired by the owner, and that the applicant cannot make reasonable economic use of the property. Such evidence may include proof of consideration of plans for adaptive reuse, and attempts to sell, rent, or lease the property.

Property owners are advised to explore all options available to them prior to requesting permission to demolish a building or structure. These may include, but are not limited to, rehabilitation, adaptive reuse, or relocation. In the event that the ARB denies a demolition request, the property owner may appeal to City Council for the right to carry out the demolition. The owner must show proof that reasonable efforts have been made to offer to sell the property at fair-market value—based on its existing condition using a qualified licensed appraiser—to individuals or groups willing to preserve and restore the building for continued use.

The option to sell property is available to owners any time before applying to the ARB for approval of a demolition. Documented proof that reasonable attempts to sell the building or structure have failed will be taken under consideration by the ARB in its review of a demolition request.

<table>
<thead>
<tr>
<th>Property Valued At</th>
<th>Minimum Sale Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100,000 or less</td>
<td>3 months</td>
</tr>
<tr>
<td>$100,000–$140,000</td>
<td>4 months</td>
</tr>
<tr>
<td>$140,000–$180,000</td>
<td>5 months</td>
</tr>
<tr>
<td>$180,000–$220,000</td>
<td>6 months</td>
</tr>
<tr>
<td>$220,000–$260,000</td>
<td>7 months</td>
</tr>
<tr>
<td>$260,000 or more</td>
<td>12 months</td>
</tr>
</tbody>
</table>

State code allows for the demolition of historic structures after offering the property for sale at fair market value for a period of time corresponding to the assessed property value.
Unsafe Structures
The City's Building Official has the authority to remove structures that are a danger to public health, safety, and welfare. While the Building Official's responsibility to remove structures that are a threat to public safety is vital to community protection, Fredericksburg’s City staff members are committed to working together and with the community to ensure that demolition is only used as a measure of last resort for historic structures, when all other measures have failed. The Building Official will engage in a risk assessment process while carrying out this authority to ensure that demolition is only utilized when absolutely necessary in the case of an immediate risk to the public. The following protocol will be used:

- The Building Official shall determine there is actual and immediate danger to the lives of occupants or the public from an unsafe structure and that demolition is the only feasible method to eliminate the hazard. Any demolition will be limited to only what is necessary to mitigate the hazard. For example, a porch or chimney that is in danger of falling may be removed, while the rest of the structure remains intact.

- The Building Official will inform the Historic Resources Planner and/or ARB when a historic structure is under consideration to be demolished and/or it is declared unsafe and will provide the proposed date of action.

- The ARB shall review the correction or demolition order under the administrative review process if the situation is not considered an immediate danger and time is available for this process.

- When a structure is determined to be unsafe or unfit for human occupancy by the Building Official, a written notice of unsafe structure or structure unfit for human occupancy shall be issued.

- Access to properties shall be prohibited except when authorization is granted by the Building Official to conduct inspections or allow further evaluation for preservation groups to assist. Streets and sidewalks may be closed on a temporary basis and in coordination with the Public Works Department, as warranted.

- The use of the City’s Spot Blight program may be used to stabilize a structure to prevent demolition unless it is determined to be necessary by the Building Official.

- Thorough documentation of a structure, meeting standards set by the ARB, shall be allowed prior to any demolition. Documentation may be limited to the exterior depending on the extent of hazardous conditions.

The Building Official’s authority to mitigate hazardous conditions for the sake of public safety is a vital responsibility; however, the City of Fredericksburg is committed to working in partnership across departments to ensure that demolition is used in limited circumstances only.
CH. 13
Disaster Planning

A. Disaster Planning

Providing residents and property owners with the tools to prepare for and recover from natural and human-made disasters, specifically with regard to the treatment of historic properties, will encourage resilience in the community and lead to better outcomes for these places in the aftermath of any event.
A. Disaster Planning

Preparedness and recovery plans are essential to minimizing and mitigating the effects of natural and man-made disasters.

The four phases of Emergency Management, as defined by FEMA:

1. Mitigation (defined as preventing future emergencies or minimizing their effects). The Mitigation Phase includes any activities that could potentially prevent or reduce the chance of an emergency occurring, as well as other preparedness measures such as obtaining flood or fire insurance. Mitigation activities can occur both before and after an emergency occurs.

2. Preparedness (defined as preparing to handle an emergency). The Preparedness Phase includes making plans or preparations to save lives and property when an emergency occurs. Preparedness Phase activities occur prior to an emergency, and include activities like creating evacuation plans and maintaining a stock of emergency food and water, as well as preparing a property to withstand flooding or wind damage.

3. Response (defined as responding safely to an emergency). The Response Phase includes actions taken to save lives and to prevent property damage while an emergency is underway. Response activities occur during an emergency and could include seeking shelter or turning off gas or electricity to a property during an emergency.

4. Recovery (defined as recovering from an emergency). The Recovery Phase occurs after an emergency has ended, and includes any actions taken to return to normalcy. Recovery activities include documenting damage, cleanup efforts, and filing an insurance claim for damage to a property affected by an emergency.

Maintain Your Property

Keeping up with maintenance at a historic property is the best strategy to avoid large-scale repairs and spending. Additionally, it can help with disaster preparedness by limiting the tasks needed to secure a building in the event of a disaster.

- Secure roof shingles and flashing.
- Keep gutters and downspouts clear of debris. If downspouts empty near the foundation, install downspout extensions or feedouts to move water away from the building and prevent structural damage and flooding.
- Ensure that exterior siding is securely attached and masonry is free of cracks and spalls.
- Properly maintain historic wood windows and doors by periodic cleaning, repainting, and glazing. Fix and replace caulking and weather stripping as needed to keep the windows watertight.
- Regularly check smoke detectors and replace batteries every six months.
- Trim tree limbs that could cause damage to adjacent buildings or utilities.
- Keep an emergency supply of towels, blankets, or rags; a roll of plastic; spare tarps and rope; and plywood sheets or lumber for temporary window and door protection and roof patching.

Preparing for a Disaster

It is important that information on the maintenance and protection of historic properties be made available to property owners and City officials after a natural disaster. Properties listed in the National Register of Historic Places individually or as contributing to the district are afforded particular attention when federal
assistance from FEMA is administered. The following pre-disaster measures are recommended:

For City Officials:
- The City of Fredericksburg’s Department of Community Planning and Building should maintain the existing comprehensive survey, and update it as new construction or demolition occurs.
- Identify locations throughout the city that could be used as staging areas in the case of an emergency.
- Identify locations that should be avoided due to their sensitive historical and/or architectural significance.
- Maintain a list of appropriate contacts at the Virginia Department of Historic Resources and the local FEMA office, to be used in the event of an emergency.

For Property Owners/Residents:
- Photodocument the interior and exterior condition of properties and develop an inventory of belongings. Keep a copy of the property documentation and file a copy with the insurance company.
- Store valuable documents in a flood and fire-resistant home safe.
- Secure the property:
 * Check the condition of your roof and siding, fixing and securing any areas that may lead to water infiltration.
 * Ensure that your porch is securely attached to the building. Use hurricane straps or bolts if needed, but be careful not to damage historic features.
 * Clear gutters and downspouts, installing downspout extensions if necessary.
 * Seal doors and windows with caulking; secure and protect doors and windows with shutters, plywood, or storm panels.
 * Seal the cap and base of your chimney.
 * Store or secure all loose outdoor objects, including trash cans, hoses, furniture, and toys.
 * Inside your building, consider moving valuable items away from windows and into safe containers, chests, or boxes.
 * Coordinate with utility companies and follow their recommendations for shutting off services.

Post-Disaster Recovery
For City Officials:
- Ensure that the Local Emergency Manager has an up-to-date copy of or access to the historic resource survey.
- Recommend to disaster response teams the areas previously identified as appropriate for staging, and inform them of the areas that should be avoided and protected.
- Contact the Virginia Department of Historic Resources for guidance.

For Property Owners/Residents:
- Immediately after the disaster:
 * Document all damage to the exterior and interior of the property caused by the disaster using photographs and written descriptions.
 * Contact your insurance agent to determine what damage is covered by your policy.
 * Use tarps to cover damaged roofs until repairs can be made. Exterior grade plywood can be used to patch sheathing and roofing felt.
 * Secure loose gutters and downspouts.
 * Use temporary wood or plastic covers for broken window and door openings.
 * Install temporary bracing where necessary.
• During clean-up:
 * Ventilate the building by opening doors, windows, and vents. Use fans only if the electrical system is safe.
 * Remove skirting around porches to ventilate the foundation.
 * Use dehumidifiers to further dry a structure after natural ventilation no longer produces results, but not before, as they can cause damage to historic materials by drying too quickly.
 * Inspect masonry and concrete for cracks, missing mortar, and other damage.
 * Inspect and evaluate insulation to determine whether removal is necessary. Saturated insulation can cause damage to structures and should be removed.
 * Inspect interior walls for signs of water infiltration: look for discoloration or bubbling or peeling paint.
 * Salvage historic materials to the greatest extent possible. Store these materials in a dry area for re-installation.
 * Damaged drywall will likely need to be replaced while plaster will need to be carefully inspected to determine whether repair or replacement is needed. Brace sagging ceilings and puncture drain holes where water is being held. Plaster will need to be dry before it is inspected for soundness. Sound plaster, especially decorative plaster, should be retained.
 * Floors should be cleaned and dried. Wood warping may take several months to even out and settle, so repairs to tile, grout, or other laminates should occur after the wood has fully dried. Wood subfloors may need to be inspected depending on the extent of water infiltration.
 * Interior and exterior painting should occur after the surfaces have completely dried to avoid bubbling and peeling of the new paint.
 * Tin ceilings and cornices will rust and should be scraped and repainted with rust-resistant primer and paint. Cast iron should also be scraped and repainted. Copper, bronze, brass, and aluminum will resist rust but should be checked for dents and punctures.

Sandbags can be used to block entries and prevent water infiltration during a storm or flooding event.
Virginia Department of Historic Resources Disaster Planning Checklist for Property Owners
https://www.dhr.virginia.gov/natural-disaster-recovery-advisory/

Personal Storm Preparations

Electronics
- Charge any device that provides light: Laptops, tablets, phones (even old ones).
- Charge external battery backups.
- Unplug all electronics before the storm to avoid power surge damage.

Personal
- Place items that are important/necessary in a backpack or small file box that is easy to grab. Include your wallet with ID, phone, charger, hand sanitizer, and snacks.
- Photograph important documents and place the paper version in protective sleeves.
- Pack a small suitcase in case you need to evacuate quickly.
- Have cash on hand and refill medications.
- Determine your emergency safe place and store needed items there.
- Determine an out of area contact person who can convey important information to others, or serve as a coordination point should that be necessary.
- Shower before the storm.

Pets
- Collar your pets and be sure to attach the correct contact info.
- Stock pet food and water.

Water Provisioning
- Fill bathtubs and sinks with water. Cover them with saran wrap to prevent dust intrusion.
- You can fill a top-load washing machine with water and leave the lid open for additional water storage.
- Fill old water bottles and other containers with water and keep near the sink for handwashing.
- Wash all household trashcans and fill with water for flushing toilets.
- Fill your freezer with storage containers filled with water. This will help keep freezer contents cold longer and act as a backup water supply if it thaws.
- Freeze a cup of water, place a coin on top after it is frozen. Keep it in your freezer to help gauge the temperature. If the coin stays on top, the food stayed frozen; if it falls into the water, the freezer thawed and food will likely need to be thrown out.

Household
- Gas up your car. Fill a spare container too.
- Fill your propane tanks.
- Lower your interior A/C temperature and refrigerator temperature in advance of the storm.
- Prep coolers for beverages and refrigerated snack items. If the power goes out, refrain from opening the refrigerator or freezer to retain cold temperatures.
- Gather candles, flashlights, lighters, matches, and batteries and store them in a safe, but accessible location.

Housekeeping
- Purchase hand sanitizer, baby wipes, and disinfecting wipes.
- Wash all dirty clothes and bedding.
- Toss expiring food and empty trashcans in the house. If you don’t have trash pickup before the storm, find a dumpster.
- Run your dishwasher.
- Clean the bathrooms, kitchen, and floors. If power is out for days, you are at least starting from a clean environment.
Appendix 1
Resource Directory/Bibliography

References

New Construction and Additions
Preservation Brief #14: New Exterior Additions to Historic Buildings: Preservation Concerns
Preservation Brief #32: Making Historic Properties Accessible

Rehabilitation
Preservation Brief #11: Rehabilitating Historic Storefronts
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors
Preservation Brief #17: Architectural Character—Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving their Character
Preservation Brief #24: Heating, Ventilating and Cooling Historic Buildings: Problems and Recommended Approaches
Preservation Brief #45: Preserving Historic Wooden Porches
Preservation Brief #47: Maintaining the Exterior of Small and Medium Size Historic Buildings
Preservation Brief #49: Historic Decorative Metal Ceilings and Walls: Use, Repair, and Replacement

Building Materials
Preservation Brief #1: Cleaning and Water-Repellent Treatments for Historic Masonry Buildings
Preservation Brief #2: Repointing Mortar Joints in Historic Masonry Buildings
Preservation Brief #6: Dangers of Abrasive Cleaning to Historic Buildings
Preservation Brief #7: The Preservation of Historic Glazed Architectural Terra-Cotta
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors
Preservation Brief #22: The Preservation and Repair of Historic Stucco
Preservation Brief #27: The Maintenance and Repair of Architectural Cast Iron
Preservation Brief #40: Preserving Historic Ceramic Tile Floors
Preservation Brief #42: The Maintenance, Repair and Replacement of Historic Cast Stone

Substitute Materials
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors
Roofs
Preservation Brief #4: Roofing for Historic Buildings
Preservation Brief #29: The Repair, Replacement and Maintenance of Historic Slate Roofs
Preservation Brief #30: The Preservation of Historic Clay Tile Roofs

Cornices
Preservation Brief #16: The Use of Substitute Materials on Historic Building Exteriors

Windows
Preservation Brief #3: Improving Energy Efficiency in Historic Buildings
Preservation Brief #9: The Repair of Historic Wooden Windows
Preservation Brief #10: Exterior Paint Problems on Historic Woodwork
Preservation Brief #12: The Preservation of Historic Pigmented Structural Glass (Vitrolite and Carrara Glass)
Preservation Brief #13: The Repair and Thermal Upgrading of Historic Steel Windows
Preservation Brief #33: The Preservation and Repair of Historic Stained and Leaded Glass
Preservation Brief #39: Holding the Line: Controlling Unwanted Moisture in Historic Buildings

Doors
Preservation Tech Notes: Historic Garage and Carriage Doors: Rehabilitation Solutions

Porches and Awnings
Preservation Brief #44: The Use of Awnings on Historic Buildings: Repair, Replacement, and New Design
Preservation Brief #45: Preserving Historic Wooden Porches

Painting
Preservation Brief #10: Exterior Paint Problems on Historic Woodwork
Preservation Brief #37: Appropriate Methods of Reducing Lead-Paint Hazards in Historic Housing
Preservation Brief #38: Removing Graffiti from Historic Masonry

Signs
Preservation Brief #25: The Preservation of Historic Signs

Floodplain Design
NPS Guidelines on Flood Adaptation for Rehabilitating Historic Buildings
Bibliography

Minutes of the Council of the City of Fredericksburg. Fredericksburg, VA: City Hall.

Other Resources

Local
- Community Planning and Building | Fredericksburg, VA - Official Website
- Historic Fredericksburg Foundation, Inc. – Preserving the “Most Historic City” since 1955 (hffi.org)
- Center for Historic Preservation (umw.edu)
- Central Rappahannock Heritage Center (CRHC)
- Central Rappahannock Regional Library (CRRL) & Virginiana Room
- Fredericksburg Virginia Main Street Association

State
- DHR – Virginia Department of Historic Resources
- Preservation Virginia: Historic Preservation, Education & Advocacy
- Virginia Main Street

National
- @SavingPlaces #TelltheFullStory | National Trust for Historic Preservation
- Welcome - Main Street America
- Technical Preservation Services, National Park Service (nps.gov)
- National Alliance of Preservation Commissions (napcommissions.org)
Appendix 2
Checklists

A. Maintenance Inspection Checklist
B. Certificate of Appropriateness Application Checklist
C. Window Evaluation Matrix
A. Maintenance Inspection Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Semiannually</th>
<th>Annually</th>
<th>After Storm</th>
<th>Acceptable</th>
<th>Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Concrete walkways</td>
<td>Look for uneven surfaces, lifting, undulating, ponding, growth from joints</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Brick walleyes</td>
<td>Look for uneven surfaces, ponding, growth from joints</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Brick steps</td>
<td>Look for uneven surfaces, ponding, growth from joints</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Asphalt paving, including parking</td>
<td>Evaluate for lifting, undulating, or broken surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Trees</td>
<td>Trim and fertilize</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Shrubs</td>
<td>Trim and fertilize</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Lawns and groundcover</td>
<td>Fertilize, water, mow, edge</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Site lighting</td>
<td>Visually evaluate, replace lamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Storm drains</td>
<td>Look for excessive erosion, proper slope, obstructions</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Handrails</td>
<td>Examine connections, finishes</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Fences - metal</td>
<td>Evaluate for rust and corrosion, connections, and damaged posts and rails</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Foundation

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Semiannually</th>
<th>Annually</th>
<th>After Storm</th>
<th>Acceptable</th>
<th>Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brick foundation walls</td>
<td>Check for moisture damage, spalling, efflorescence</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Slab on grade</td>
<td>Evaluate for cracks, chips, uneven surfaces, check for moisture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wildlife/Insect Evaluation</td>
<td>Check for nests, holes, animal droppings, material decay</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 Structural System

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Semiannually</th>
<th>Annually</th>
<th>After Storm</th>
<th>Acceptable</th>
<th>Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brick bearing walls</td>
<td>Check for cracks, missing mortar, straight and true walls</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Wood framed interior bearing walls</td>
<td>Visually evaluate for water damage, cracks, bulging</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wood roof framing system</td>
<td>Check overall alignment for deflection, cracking, decay</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wood roof sheathing</td>
<td>Look for water damage, decay, fastener failure</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Wood ceiling framing system</td>
<td>Check overall alignment for deflection, cracking, decay</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Wood floor framing system</td>
<td>Check overall alignment for deflection, cracking, decay</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Wood floor sheathing</td>
<td>Look for water damage, decay, fastener failure</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Steel reinforcing</td>
<td>Examine for signs of rust, evaluate fixings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Building Envelope/Exterior Walls

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Semiannually</th>
<th>Annually</th>
<th>After Storm</th>
<th>Acceptable</th>
<th>Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Brick masonry</td>
<td>Look for surface salts, failing mortar, damaged bricks</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Concrete and Brick steps</td>
<td>Examine joints, check for cracking, staining, and biological growth</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wood eaves, fascia and cornice</td>
<td>Check for flaking paint, rotting wood, secure connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Task</td>
<td>Weekly</td>
<td>Monthly</td>
<td>Quarterly</td>
<td>Semiannually</td>
<td>Annually</td>
<td>After Storm</td>
<td>Acceptable</td>
<td>Not Acceptable</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>5</td>
<td>Exterior paint -- porches and window frames</td>
<td>Visually evaluate for flaking, blistering, weathering</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Building Envelope: Roofing

1	Metal roofing	Evaluate for rust, and corrosion, poor connections, bent seams		✓	✓	✓		
2	Gutters	Look for debris, corrosion, holes, faulty connections	✓	✓	✓			
3	Downspouts	Check for clogs, leaks, proper distance of discharge from building (winter)	✓	✓	✓			
4	Perimeter drainage system	Ensure proper installation and function	✓	✓	✓			
5	Chimneys	Evaluate for structural stability, capping	✓	✓	✓			
6	Artic vents	Make sure unobstructed and adequate for space/climate	✓	✓	✓			

1.6 Building Envelope: Windows and Doors

1	Wood windows	Check for water seepage, cracked panes, rotted sash & cords	✓				
2	Wood window sills	Look for water seepage, flaking paint, decayed wood	✓				
3	Wood door sills	Look for water seepage, flaking paint, decayed wood	✓				
4	Wood doors, frames and hardware	Evaluate for damaged jambs, moldings, operational hardware, water seepage, flaking paint, decayed wood	✓				

1.7 Interior Finishes

<p>| 1 | Plaster ceilings | Visually evaluate for cracks, chips, water stains | ✓ | | | | |
| 2 | Plaster walls | Visually evaluate for cracks, chips, water stains | ✓ | | | | |
| 3 | Wall paper | Evaluate for water stains, proper adhesion, other damage | ✓ | | | | |
| 4 | Wood wainscoting | Check for water damage, decay, cracking, peeling paint - dust | ✓ | | | | |
| 5 | Wood trim | Examine for damaged, missing molding, secure connection - dust | ✓ | | | | |
| 6 | Wood flooring | Oil, visually evaluate for warping, excessive wear, damage | ✓ | | | | |
| 7 | Concrete flooring | Look for cracks, chipped or broken pieces, stains | ✓ | | | | |
| 8 | Window coverings | Check for damage, secure connections, excessive wear/dirt | ✓ | | | | |
| 9 | Wood stairs and wood railings | Examine alignment, look for excessive wear, deterioration | ✓ | | | | |
| 10 | Metal railings | Check for rust, corrosion, flaking paint, and secure connections | ✓ | | | | |
| 11 | Wood casework | Check for rotting, decaying wood, operational hardware | ✓ | | | | |
| 12 | Interior paint and/or clear finishes | Look for flaking, dirt, water stains or blistering | ✓ | | | | |
| 13 | Interior glazing - interior storms | Check for cracked or broken glass, failed attachments at storms (Re-paint every 5 years) | ✓ | | | | |
| 14 | Windows (interior surfaces) | Check for cracked or broken glass, clean and dust | ✓ | | | | |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
<th>Semiannually</th>
<th>Annually</th>
<th>After Storm</th>
<th>Acceptable</th>
<th>Not Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Architectural Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Exterior stoop, stairs and landings</td>
<td>Look for level surfaces, alignment, dirt, damage, discoloration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Porches</td>
<td>Look for level surfaces, alignment, dirt, deteriorated mortar joints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fireplaces</td>
<td>Evaluate damper, flue, and firebox for operability/cleanliness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Mechanical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Water heaters</td>
<td>Look for leaks, drain to reduce sediment build-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Furnace</td>
<td>Check temperature setting, safety mechanisms, change filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Metal ductwork</td>
<td>Evaluate for holes, loose connections (as visible)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Registers</td>
<td>Examine for dirt, flaking paint, connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Air handling units</td>
<td>Keep clear of debris/exhaust; ensure regular evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Condenser units</td>
<td>Ensure regular evaluation by a qualified professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Exhaust fans</td>
<td>Ensure working order, keep vent clear of dirt and debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plumbing waste and vent piping and fittings</td>
<td>Visually evaluate for leaks, corrosion, damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plumbing supply piping and fittings</td>
<td>Visually evaluate for leaks, corrosion, damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Plumbing fixtures</td>
<td>Evaluate for drips, leaks, ease of operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Utilities (water, heating, sewer, etc.)</td>
<td>Ensure regular evaluation by a qualified professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Electrical Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical service entrance</td>
<td>Keep free of obstructions, dirt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Main switchgear</td>
<td>Make sure accessible, evaluate for corrosion, dirt, cobwebs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Distribution panels</td>
<td>Make sure accessible, evaluate for corrosion, dirt, cobwebs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Interior light fixtures</td>
<td>Check bulbs, fittings, wall and ceiling connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Exterior light fixtures</td>
<td>Visually evaluate, replace lamps, check connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Electrical outlets</td>
<td>Evaluate for damage, secure plate connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Life / Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Fire extinguishers</td>
<td>Test proper operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fire alarm system</td>
<td>Test proper operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Smoke detection systems</td>
<td>Test proper operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Panic hardware</td>
<td>Check operation and compliance with existing codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Security alarm system</td>
<td>Ensure regular evaluation by a qualified professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. **Certificate of Appropriateness Application Checklist**

<table>
<thead>
<tr>
<th>TYPE OF REQUEST</th>
<th>Level of Review</th>
<th>Application Fee</th>
<th>Photographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDITIONS</td>
<td>ARB</td>
<td>$180</td>
<td>✔️</td>
</tr>
<tr>
<td>SIGNS</td>
<td>Staff</td>
<td>$60</td>
<td>✔️</td>
</tr>
<tr>
<td>FENCES</td>
<td>Staff</td>
<td>$60</td>
<td>✔️</td>
</tr>
<tr>
<td>NEW CONSTRUCTION:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Structure: Site Plan, Scale, and Massing</td>
<td>ARB</td>
<td>$180</td>
<td>✔️</td>
</tr>
<tr>
<td>Primary Structure: Architectural Details</td>
<td>ARB</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Accessory Structure</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>DEMOLITIONS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Structure (In part or in total)</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Accessory Structure</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>RELOCATION</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>ALTERATIONS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor alterations, including: awnings, canopies, storm doors, gutters, downspouts, chimney caps, shutters, lighting fixtures, or similar appurtenances</td>
<td>Staff</td>
<td>$60</td>
<td>✔️</td>
</tr>
<tr>
<td>Mechanical Equipment</td>
<td>ARB</td>
<td>$60</td>
<td>✔️</td>
</tr>
<tr>
<td>Doors: add, remove, or change in material/style/opening</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Siding: remove, replace, change in material or design</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Paint previously unpainted materials</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Porches: open, enclose, change materials or design</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Roof: change in material or shape</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Windows: replacement, change in openings</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Architectural Details</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>Storefronts</td>
<td>ARB</td>
<td>$120</td>
<td>✔️</td>
</tr>
<tr>
<td>TEMPORARY EMERGENCY STABILIZATION</td>
<td>Staff</td>
<td>$60</td>
<td>✔️</td>
</tr>
</tbody>
</table>

KEY: (✔️) = Items required to be submitted by the applicant.
<table>
<thead>
<tr>
<th>Site Plan</th>
<th>Elevations/Design Drawing</th>
<th>Perspective or 3D Rendering</th>
<th>Rendered Street Elevation</th>
<th>Material/Product Information</th>
<th>Condition Assessment</th>
<th>Mailed Notification</th>
<th>Wall Section Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>°</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>*</td>
<td>°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) = Items which may be required, consult with staff to verify.
A great assortment of historic window types can be found in Fredericksburg’s downtown core.
If your application for a Certificate of Appropriateness includes the replacement of windows on an elevation visible from a public right-of-way, please complete this evaluation form and submit with your application. The evaluation is used to determine the need to replace existing windows based on their condition.

Demonstrated need is shown in the form of a window assessment. The assessment needs to correspond to numbered photos of each window to be replaced. Items such as window glazing, glass, or finishes (paint) are typically easily repairable and as such are not considered conditions that warrant window replacement. Lintel and sill conditions are structural issues and could warrant window replacement depending on severity. Repair of existing elements does not require a Certificate of Appropriateness or permit approval.

<table>
<thead>
<tr>
<th>Property Address:</th>
</tr>
</thead>
</table>

Instructions

Please make sure completed form is legible. Forms that are not legible will be returned and the review of the application could be put on hold. Using one line per window, evaluate each window proposed for replacement. Evaluate each window based on the overall condition and not just one component. For further information concerning the preservation of historic wood or metal windows, please refer to the National Park Service Preservation Brief #9: The Repair of Historic Wooden Windows and the National Park Service Preservation Brief #13: The Repair and Thermal Upgrading of Historic Steel Windows.

Frame and Sash Section Value Explanations

Repair Class 1: Window component needs only normal routine maintenance to upgrade a window to “like new” condition. This normally includes: some degree of interior and exterior paint removal, removal and repair of sash (including reglazing where necessary), simple repairs to the frame, weather stripping and reinstallation of the sash, and repainting. *If these types of repairs are required, enter the number 1 in the cell.*

Repair class 2: The window is operationally sound, but shows some additional degree of physical deterioration than repair type 1. Components can be repaired using simple processes, such as patching or consolidation, and then painted to achieve a sound condition, good appearance, and greatly extended life. *If these types of repairs are required, enter the number 2 in the cell.*

Repair class 3: Components are so badly deteriorated that they cannot be stabilized. Repair would involve replacing the deteriorated parts with new matching pieces, or splicing new wood into existing members. Most cases could involve removal of the sash and/or the affected parts of the frame and reproduction of damaged or missing parts by a carpenter or woodworking mill. *If these types of repairs are required, enter the number 3 in the cell.*

<table>
<thead>
<tr>
<th>Name of Applicant/Representative:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: __________________________</td>
</tr>
<tr>
<td>E-Mail: __________________________</td>
</tr>
<tr>
<td>Phone: __________________________</td>
</tr>
<tr>
<td>Years of Experience in Historic Window Repair: __________________________</td>
</tr>
</tbody>
</table>

July 10, 2017
Window Assessment

<table>
<thead>
<tr>
<th>Description of Window</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>Double-Hung 1:1</td>
</tr>
</tbody>
</table>

Example

Reprint additional sheets as needed
Window Assessment

<table>
<thead>
<tr>
<th>Weather-stripping?</th>
<th>Sill & Lintel</th>
<th>Jambs</th>
<th>Sash Only Replacement?</th>
<th>Bottom Rail</th>
<th>Rails & Stiles</th>
<th>Muntins</th>
<th>Meeting Rail</th>
<th>Total Value</th>
<th>Proposed Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>2</td>
<td>2</td>
<td>No</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>Replace deteriorated bottom rail, use epoxy repair on rotten sill and jambs, repair glazing and add weather-stripping</td>
</tr>
</tbody>
</table>

Note:
- **Square?**
- **Operable?**
- **Glazing?**
- **Weather-stripping?**
- **Sill & Lintel**
- **Jambs**
- **Sash Only Replacement?**
- **Bottom Rail**
- **Rails & Stiles**
- **Muntins**
- **Meeting Rail**
- **Total Value**
- **Proposed Treatment**
Frame and Sash Comparison - Single and Double-Hung Windows

Instructions: To effectively evaluate replacement windows, it is important to understand how the physical characteristics of the existing and proposed windows compare. Please fill in each value, in inches. Feel free to note any other measurements you feel are important to the replacement discussion.

<table>
<thead>
<tr>
<th>Existing Frame and Sash Exterior Material</th>
<th></th>
<th>Proposed Frame and Sash Exterior Material</th>
</tr>
</thead>
</table>

1. Upper Sash Depth/Shadow Profile	Existing	Proposed
(from exterior façade to glass)		
2. Lower Sash Depth/Shadow Profile		
(from exterior façade to glass)		
3. Side Trim Measurement		
4. Top/Bottom Trim Measurement		
5. Stile Width Measurement		
6. Bottom Rail Height Measurement		
7. Meeting Rail Height Measurement		
8. Muntin Width Measurement		
9. Glass Height Upper Sash		
10. Glass Width Upper Sash		
11. Glass Height Lower Sash		
12. Glass Width Lower Sash		
13. Overall Sash Height		
14. Overall Sash Width		
Window Comparison—Casement Windows

Instructions: To effectively evaluate replacement windows, it is important to understand how the physical characteristics of the existing and proposed windows compare. Please fill in each value, in inches. Feel free to notate any other measurements you feel are important to the replacement discussion.

Existing

- Window Location
- Exterior Material
 1.
 2.
 3.
 4.
 5.
 6.

Proposed

- Window Location
- Exterior Material
 1.
 2.
 3.
 4.
 5.
 6.
Appendix 3
Glossary of Terms

General

Administrative approval - Approval by staff representatives of the Architectural Review Board (ARB).

Alteration - Any change, modification, or addition to the structure, materials, color, texture, or details of all or a part of the exterior of any building, structure, or site other than normal repair, maintenance, and landscaping.

Appropriate - Suitable or proper. For example, it would be appropriate for the new addition to have a slightly lower gable roof because the historic house has a gable roof.

Certificate of appropriateness - The approval statement issued by the ARB and signed by its secretary which certifies the appropriateness of a particular request for the construction, alteration, reconstruction, repair, restoration, or demolition of all or a part of any building, structure, or site within the Old and Historic Fredericksburg District and which is subject to all other permits required by law.

Compatible - Capable of harmonious combination with existing elements in the built environment. For example, the new building is compatible because it has the same scale, massing, setback, and uses the same materials as nearby buildings in the district.

Conceptual review - This review process occurs when the ARB discusses the applicant’s proposal and offers comments based on the design guidelines. Conceptual review does not result in approval or denial of an application; it is advisory.

Defer - Delay. Deferral usually occurs when the ARB does not have adequate information to approve or deny the application. Deferral may also occur when an applicant is not present to answer the ARB’s questions about the project.

Demolition - The dismantling or tearing down of all or a part of any building or structure and all operations, including grading, incidental thereto.

Deny - To refuse to grant, or to withhold. This term describes the ARB’s response to an application that is inconsistent with the standards and guidelines.

Exterior architectural features - The architectural style, general design, and general arrangement of the exterior of a building or other structure, including the kind and texture of the building material; the type and style of all windows, doors, light fixtures, signs, and decorative features; and other appurtenances that are subject to public view.
FALSE HISTORICISM - Architectural treatments whose intention is to make the building, in whole or in part, appear to have been constructed during a time (or in a style) that is different from the period during which the building was actually constructed.

FORM - The specific combination of massing, size, symmetry, proportions, projections, and roof shapes that lend identity to a structure.

HISTORIC - That which pertains to periods of development, events, persons, and activities of importance in the history of the city, the Commonwealth, or the United States of America.

HISTORIC RESOURCES - Buildings, objects, structures, neighborhoods, sites or areas within the city that are either designated as or eligible for designation as a component of the Historic District.

IN-KIND REPLACEMENT - Replacement of a building element with a new element that matches exactly in material, finish, and configuration.

INTEGRITY – Completeness, retaining most of the following historic attributes: location, design, setting, materials, workmanship, feeling, and association.

LANDMARK - Any building, structure, or place which has a special character or a special historical or aesthetic interest or value to a community.

MASSING - The overall shapes and forms of a building. For example, the building’s rectangular massing was topped with a pyramidal roof.

NEW CONSTRUCTION - Any construction which is independent of an existing structure or an expansion of an existing structure.

NORMAL REPAIR AND MAINTENANCE - Any work involving the replacement of existing work with equivalent material, design, color, and workmanship for the purpose of maintaining the existing condition of the building, structure, or site.

OLD AND HISTORIC FREDERICKSBURG DISTRICT - (as distinguished from National Register Historic Districts) A zoning designation of the City of Fredericksburg. Any portion of the city designated and included within the zoning overlay and subject to the review of the ARB.

ORIENTATION - The placement of a structure on a site with regard to local conditions of sunlight, wind, drainage, and street frontage.

PRESERVATION - Maintenance of the existing form, integrity, and material of a building or structure.

PUBLIC RIGHT OF WAY - A public street, alley, or sidewalk where the public has a right to travel. The view from alleys is specifically exempted from the ARB’s review.
PUBLIC VIEW - That which is visible from a public right-of-way or public property.

REHABILITATION - The process of restoring a building to a usable condition.

RENDERING - A perspective or elevational drawing of a project with artistic delineation of materials, shades, and shadows.

RESTORATION - The process of returning a building to its form and condition at a specific point in history by removing later work and/or replacing missing earlier work.

REVEAL - The part of a building material, such as a roof shingle or piece of siding, exposed to view.

SALVAGE MATERIAL - Building elements that have been removed from one location and stored for sale or reuse in a new or different location.

SCALE - The relative size of a building or architectural feature.

SECRETARY’S STANDARDS, THE - As in “The Secretary of the Interior’s Standards for Rehabilitation.” A list of ten national standards widely used by local, state, and Federal agencies to evaluate proposed changes to historic properties.

SETBACK - A term in zoning to describe the distance between a building wall and the property line which it parallels (or toward which it faces).

SITE - Any parcel of unimproved property, a parking lot, or a park; the setting for any structure.

SITE IMPROVEMENTS - Structural changes to the grounds of a property, including the installation or alteration of walls, fences, or structures; paving; regrading; and the installation or removal of major plantings.

SITING - The relationship between a structure planned for construction and the parcel of land on which it is situated.

STABILIZATION - The reestablishment of a weather-resistant enclosure and structural stability of an unsafe or deteriorated property.

GENERAL STANDARDS - The Architectural Review Board shall issue a certificate of appropriateness for alterations that are compatible with a property and the district of which it is a part. The Old and Historic Fredericksburg District contains buildings of varying architectural and historic significance. The Board shall evaluate the significance of each property on a case by-case basis. The historic character of the district shall be the primary consideration of the Board in reviewing proposed designs for the district. The Board may adopt additional standards for the review of certificates of appropriateness to supplement these standards.
Standards for Rehabilitation - The Architectural Review Board shall issue a certificate of appropriateness for the rehabilitation of a property if it determines that a proposed change is compatible with the property and with the Old and Historic Fredericksburg District. The historic design, features, materials, finishes, and craftsmanship of a property shall be preserved whenever possible. Significant historic features of a property shall be treated with care. The Board may require that existing materials, decorative elements, and structural elements be repaired rather than replaced. The Board may adopt additional rehabilitation standards for the review.

Standards for New Construction - The Architectural Review Board shall approve new construction which it deems to be compatible with the design, scale, materials, color, height, setback, and other pertinent features of the Old and Historic Fredericksburg District. The Board may adopt additional new construction standards for the review of certificates of appropriateness to supplement these standards.

Standards for Demolition - The Architectural Review Board shall not issue a certificate of appropriateness for demolition of any building or structure within the Old and Historic Fredericksburg District, unless the applicant can show that there are no feasible alternatives to demolition. The demolition of historic buildings and elements is strongly discouraged. The demolition of any building deemed by the Board to not contribute to the historic character of the district shall be permitted. The demolition of any building that has deteriorated beyond the point of being feasibly rehabilitated is permissible, where the applicant can satisfy the Board as to the infeasibility of rehabilitation. The Board may adopt additional demolition standards for the review of certificates of appropriateness applications to supplement these standards.

Architectural
Addition - A wing or structure added to an existing building.

Anchor - A metal clamp, often of fanciful design, (such as a star) fastened on the outside of a wall to the end of a tie rod connecting with an opposite wall, to prevent bulging.

Annex - A subsidiary structure near or adjoining a larger main building.

Apex - The highest point, peak, or tip of any structure.

Arch - A curved or pointed construction which spans an opening.

Architrave - The lowest member of an entablature; the beam that spans from column to column.

Attic - A story built above the wall cornice.

Awning - A roof-like shelter of canvas or other material extending over a doorway or window.

Balcony - A projecting platform, sometimes supported from below, sometimes cantilevered, enclosed with a railing or balustrade.

Balloon frame - Wooden building framing where all vertical structural elements of the exterior bearing walls consist of single studs which extend the full height of the frame.
Baluster - One of a number of short vertical members, often circular in section, used to support a railing.

Balustrade - An entire railing system (as along the edge of a balcony) including a top rail and its balusters, and sometimes a bottom rail.

Bargeboard - The decorative board along the roof edge of a gable that conceals the rafters.

Basement - Usually the lowest story of a building, either partly or entirely below grade.

Basket weave - A checkerboard pattern of bricks.

Batten - A narrow strip of wood applied to cover a joint along the edges of two parallel boards (as in board and batten).

Bay - A vertical division of a building marked by fenestration or other architectural features.

Bay window - A window that projects from an exterior wall.

Bead - A molding used in ornamenting a given surface.

Beam - A structural member whose prime function is to carry transverse loads, as a joist, girder, rafter, or purlin.

Bearing wall - A supporting part of a structure.

Belfry - A room at or near the top of a tower which contains bells and their supporting timbers.

Belt course - See string course.

Blank wall - (also blind wall, dead wall) A wall whose whole surface is unbroken by a window, door, or other opening.

Blank window - (also blind window, false window) A recess in an external wall, having the external appearance of a window, to give symmetry.

Blind - See shutter.

Board and batten - Vertical siding on a structure that has narrow strips covering the vertical joints between the boards.

Bond - An arrangement of masonry units (such as bricks) to provide strength, stability, and beauty.

Brace - A metal or wood member which is used to stiffen or support a structure.

Bracket - A decorative support beneath a projecting floor, window, or cornice.
Brick - A solid or hollow masonry unit of clay or shale, molded into a rectangular shape and then fired in a kiln.

Broken pediment - A decorative element - usually over a door or a window - in which the sloping sides do not meet, creating an opening that contains a decorative feature.

Bulkhead - The structural supporting wall under the display windows of a storefront.

Buttress - An exterior mass of masonry set at an angle to a wall to provide strength and support.

Canopy - A covered area which extends from the wall of a building to protect an entrance.

Cantilever - A structural member which projects beyond its supporting wall or column.

Capital - The upper portion of a column or pilaster.

Cased-in timber - Finished millwork which covers or encases a structural member such as a porch post.

Casement window - A window which swings open along its entire length.

Cast iron - Iron that is formed by pouring the molten metal into a mold and letting it cool.

Caulk - Material used to fill or close seams and crevices in order to make them watertight.

Clapboards - A wood siding commonly used as an exterior covering on a wood frame building. It is applied horizontally and overlapped, with the grain running lengthwise.

Chimney - The vertical structure containing a passage or flue, which carries smoke and gases from a fire or furnace by means of a created draft.

Chimney pot - An earthenware or metal pipe fitted on top of a chimney to increase draft and reduce or disperse smoke.

Column - A vertical member, such as a post or a pillar, which supports a load.

Common bond - (also American bond) A bond in which every fifth or sixth brick course consists of headers, the other courses being stretchers. Widely used because such brickwork can be laid quickly.

Coping - A protective cap, top, or cover of a wall, parapet, or chimney; often of stone, terra-cotta, concrete, or metal. Protects the masonry below from the penetration of water from above.

Corbeling - Courses of masonry that project out in a series of steps from the wall, often part of the cornice at the top of a façade or at the top of a chimney.
Corner board - A board used as trim on the external corner of a wood frame structure and against which the ends of the siding are fitted.

Cornice - The exterior trim of a structure where the roof meets the wall.

Course - A layer of masonry units (such as bricks) running horizontally in a wall and bonded with mortar.

Cresting - A decorative ridge on a roof, usually constructed of ornamental metal.

Cupola - A small structure built on top of a roof or building.

Dentil - One of a band of small, square blocks forming part of a cornice.

Dependency - A subsidiary building near or adjoining a principal structure.

Dome - A curved roof structure; often hemispheric in shape.

Door - An entranceway. A barrier which swings, slides, tilts, or folds to close an opening.

Door header - The uppermost member of a door frame.

Door jamb - The vertical member on each side of a door (also called the doorpost).

Door sill - The horizontal member, usually a board, covering the floor joint on the threshold of a door.

Dormer - A structure projecting from a sloping roof, usually housing a window or a vent.

Dormer window - A vertical window which projects from a sloping roof, placed in a small structure.

Double window - Two windows, side by side, which form a single architectural unit.

Downspout - (also leader) A vertical pipe used to conduct water from the roof to the ground.

Dressed stone - Stone that has been worked to a shape; the faces to be exposed are smooth.

Drip cap - A horizontal molding, fixed to a door or window frame, to divert water from the top rail, causing it to drip beyond the outside of the frame.

Eaves - The lower edge of a sloping roof; that part of a roof which projects beyond the wall.

Elevation - A drawing showing the elements of a building in plane.

English basement - A basement located partially or wholly above ground level.

English bond - Brickwork with alternating courses of headers and stretchers.
ENTABLATURE - 1. The elaborated beam member carried by columns horizontally divided into architrave (below), the frieze, and cornice (above). 2. The upper section of a wall, generally supported on columns or pilasters. On storefronts, the entablature is often used to display signs.

Eyebrow - A low curved dormer on the slope of a roof. It has no sides and the roofing is carried over it.

Fabric - The basic elements of a building.

Facade - The exterior face of a building which constitutes the architectural front.

Fanlight - A semi-circular window over the opening of a door or within a wall, with radiating muntins in the form of an open fan.

Fascia - A flat horizontal member or molding with little projection, commonly under eaves and cornices.

Fence - A barrier enclosing or bordering a yard.

Fenestration - The arrangement of the openings in a building.

Finial - An ornament which terminates the point of a gable or spire.

Flashing - Pieces of sheet metal used to weatherproof joints and angles, as where a roof comes in contact with a wall or chimney.

Flat Arch - (also jack arch, straight arch) An arch that is horizontal or nearly horizontal.

Flemish Bond - Brickwork in which each course consists of headers and stretchers laid alternately; each header is centered with respect to the stretchers above and below it.

Flue - (also chimney flue) An incombustible and heat-resistant passage in a chimney to carry away combustion products from a fireplace, furnace, or boiler.

Flute - A groove or channel, usually one of many such parallel grooves, used decoratively, as along the shaft of a column.

Flying Buttress - A characteristic feature of Gothic construction in which the lateral thrust of a roof is taken up by a bar of masonry, carried on an arch, and a solid pier or buttress.

Footprint - The extent of a building's impression in the earth.

Form - The particular shape of a building.

Foundation - The supporting member of a wall or structure.

Frame House - A house of wood frame construction, usually sheathed and covered with a siding material.
Framing - A system of structural woodwork.

Frieze - The middle horizontal member of an entablature, above the architrave and below the cornice.

Gable - The vertical triangular portion of the end of a building having a double-sloping roof, from the cornice or eaves to the ridge of the roof.

Gable roof - A roof having a gable at one or both ends.

Gambrel roof - A roof which has two pitches on each side (frequently found in barns).

Gingerbread - The highly decorative woodwork applied to Queen Anne-style houses, or the like.

Glazing - Another term for glass or other transparent material used in windows.

Gutter - A shallow channel of metal set below and along the eaves to catch and carry rainwater from the roof.

Hanging post - (also gatepost, hinge post, swinging post) The post on which a gate is hung.

Header - 1. A masonry unit (such as a brick), laid so its short ends are exposed. 2. A framing member which crosses an opening such as a door or window and supports the ends of joists, rafters, etc., transferring their weight to parallel joists, rafters, etc.

Herringbone pattern - A diagonal zigzag pattern of bricks.

Hip - The external angle at the junction of two sloping roofs.

Hipped end - The sloping triangularly-shaped end of a hipped roof.

Hipped gable - see jerkinhead.

Hip roof - (also hipped roof) A roof which slopes upward from all four sides of a building.

Hood - A cover placed above an opening to shelter it.

Hood molding - Projecting molding over a door or window.

Infill - A new structure built in a block of existing buildings.

Internal dormer - A vertical window in a sloped roof; it is not covered by a small pitched roof, but is set down from the slope of the main roof.

Ironwork - Wrought or cast iron; usually decorative and often elaborate.
Jack arch - See flat arch.

Jamb - A vertical member at each side of a door or window frame.

Jerkinhead - (also clipped gable, hipped gable) The end of a roof when it is formed into a shape between a gable and a hip.

Joist - One of a series of parallel timber beams used to support floor and ceiling loads; supported in turn by larger beams, girders, or bearing walls.

Keystone - The central block of a masonry arch. Until the keystone is in place, the arch is not truly functional.

Lancet - (also lancet window) A narrow window with a sharp pointed arch; much used in Gothic architecture.

Lattice - A network, often diagonal, of narrow thin strips of wood or iron, used as screening.

Lean-to - A small extension to a building with a roof (of a single slope) whose supports lean against the building.

Light - 1. An aperture through which daylight is admitted to a building's interior. 2. A pane of glass.

Lintel - A horizontal structural member over an opening, which carries the weight of the wall above it.

Loft - Unceilinged space beneath a roof.

Louver - An assembly of sloping, overlapping slats (fixed or adjustable) designed to admit air or light in varying degrees while excluding rain and snow.

Mansard roof - A roof having a double slope, similar to a gambrel roof, but where the lower slope is longer and steeper than the upper slope.

Marquee - A fixed metal and glass canopy over an entrance to a building.

Modillion - A horizontal bracket, usually in the form of a scroll, that helps support a cornice.

Molded brick - A specially shaped brick, usually for decorative work.

Molding - A member of construction or decoration that introduces a variety of outlines or contours in edges or surfaces. Found on cornices, bases, and door and window jambs.

Mortar - The mixture of lime or cement or a combination of both with sand and water, used as a masonry bonding agent.
MORTAR JOINTS - The finished mortar surface between masonry units.

MOTIF - A principal repeated element in an ornamental design.

MULLION - A vertical member separating (and often supporting) windows, doors, or panels set in a series.

MUNTIN - A secondary framing member to hold panes of glass within a window or glazed door.

OPEN PEDIMENT - See broken pediment.

ORDER - In classical architecture, a particular style of column with its entablature having standardized details. The Greek orders were Doric, Ionic, and Corinthian.

ORNAMENT - In architecture, every detail of shape, texture, and color that is deliberately used or added to attract the attention of an observer.

OVERHANG - The projection of an upper story or roof beyond a story immediately below.

PALLADIAN MOTIF - A door or window opening in three parts, divided by posts, with a lintel flat over each side, but arched over the center.

PANE - A framed sheet of glass in a window or door.

PANEL - A portion of a flat surface that is recessed below the surrounding area, sometimes set off by molding or other decorative device.

PARAPET - In an exterior wall, the part entirely above the roof.

PATINA - A thin oxide film which forms on a metal.

PAVILION - On a facade, a prominent portion usually central or terminal, identified by projection, height, or special roof forms.

PEDIMENT - The triangular gable end of a roof.

PENDANT - A suspended feature or hanging ornament.

PIER - A column designed to support concentrated loads.

PILASTER - A decorative feature that imitates a pier or a pillar but is not a supporting member, often used as a simulated pillar on porches in entrances.

PITCH - The degree of slope of a roof.

PLATE - In wood-frame construction, timber laid horizontally in a wall, on top of a wall, or on the ground to receive other timbers or joists.
Pointing - In masonry, the final treatment of joints by the troweling of mortar into them.

Porch - A structure attached to a building to shelter an entrance or to serve as a semi-enclosed space; usually roofed and generally open sided.

Portico - A small porch forming the entrance and centerpiece of a facade; usually consisting of a pedimented roof supported by columns.

Quoin - In masonry, the stones which form the external corner of a building; sometimes distinguished decoratively from the adjacent masonry. In Fredericksburg, some brick buildings have sandstone or granite quoins.

Rafter - One of a series of inclined members to which a roof covering is fixed.

Rain leader - See downspout.

Raking - Slope, as in a roof pitch.

Replication - A copy or reproduction of an original feature.

Repoint - To remove deteriorated mortar and replace it with new mortar.

Retaining wall - A wall that bears against the earth and resists its lateral movement.

Retrofit - To fit a building with parts or equipment not available at the time of original construction.

Ridge - The horizontal line at the junction of the upper edges of two sloping roof surfaces.

Riprap - An arrangement of irregularly broken and random-sized stones thrown together without any attempt at regular structural arrangement.

Riser - The vertical face of a stair step.

Roof - The cover of a building, including the cladding and all other materials necessary to carry and maintain it on the walls or uprights.

Row house - One of an unbroken line of houses sharing one or more sidewalls with its neighbors.

Sash - (also window sash) Any framework of a window; may be movable or fixed; may slide in a vertical plane (as in a double-hung window) or pivot (as in a casement window). In describing window configuration, it is common to refer to the number of panes in the upper and lower halves of the sash (i.e. six-over-six, three-over-one, nine-over-nine, etc.)

Scale - Relative or proportionate size.
Screen - Any construction whose essential function is merely to separate, protect, seclude, or conceal, but not to support.

Scupper - An opening in a wall or parapet that allows water to drain from a roof.

Setback - The interval between a building and a property line.

Shake - Any thick hand-split shingle or clapboard, usually edge-grained; formed by splitting a short log into tapered radial sections.

Sheathing - The covering placed over the exterior framing of a building; provides a base for the application of wall or roof covering.

Shed Dormer - A dormer window whose eave line is parallel to the eave line of the main roof instead of being gabled.

Shed Roof - A roof shape having only one sloping plane.

Shingle - A roofing unit of wood, asphaltic or fiberglass material, slate, tile, concrete, asbestos cement, or other material cut to stock sizes; used as an exterior covering on sloping roofs and side walls; applied in an overlapping fashion.

Shutters - Solid or louvered movable window coverings.

Sidelight - A framed area of fixed glass alongside a door or window opening.

Siding - The finish covering of an exterior wall of a frame building.

Sill - 1. A horizontal timber, at the bottom of a wood frame, which rests on the foundation. 2. The horizontal bottom member of a door or window frame.

Skylight - An opening in a roof or ceiling, fitted with glass, to admit daylight.

Soffit - The finished undersurface of any overhead building component, such as an arch, balcony, beam, cornice, or lintel.

Soldier Course - A course of bricks where the stretchers (long sides) of the bricks are set vertically.

Spall - A small fragment split off from the face of a stone or masonry unit by a blow or by action of the elements.

Span - The interval between two terminals of a construction.

Spire - Any slender pointed construction surmounting a building.
Stack - A vent, as for plumbing.

Standing seam metal - A roof covering of long sheets of metal one edge of which is folded over the edge of the adjoining sheet and crimped, forming a raised seam.

Step - A stair unit that consists of one tread and one riser.

Stile - One of the upright structural members of a frame, as at the outer edge of a door or a window sash.

Stoop - A platform or small porch at the entrance of a house.

Stop - The molding or trim on the inside face of a door or window frame against which the door or window closes.

Story - The space in a building between floor levels, or between a floor and a roof.

Stretcher - A masonry unit laid horizontally with its length in the direction of the face of the wall.

String course - A horizontal band or course, projecting beyond or flush with the face of a building. Also called a belt course.

Stringer - A long, heavy horizontal timber which connects the posts in a frame which supports a floor.

Stucco - An exterior finish, usually textured; composed of portland cement, lime, and sand mixed with water.

Surround - An encircling border or decorative frame.

Terra-cotta - Hard, unglazed fired clay; used for ornamental work and roof and floor tile.

Texture - The tactile and visual quality of a surface or substance other than its color.

Tie beam - In roof framing, a horizontal timber, connecting two opposite rafters to prevent them from spreading.

Threshold - A strip fastened to the floor beneath a door; may provide weather protection at exterior doors.

Tracery - Intricate line patterning used to decorate a window or in relief as wall patterning.

Transom - 1. The cross-bar separating a door from a window, panel, or louver above it. 2. An opening over a door or window. 3. The window area above the display windows and door of a commercial storefront.

Transom light - A glazed light above a door.

Tread - The horizontal upper surface of a step in a stair.
Trellis - An arbor or framework, sometimes including lattice, for the support of vines or other vegetation.

Triglyph - A Frieze ornament consisting of slightly raised vertical bands separated by V-shaped grooves.

Truss - A structure composed of a combination of members, usually in a triangular arrangement, so as to constitute a rigid framework.

Turned work - Wood pieces having a circular outline, such as columns and balusters; usually cut on a lathe.

Valance - The overhanging edge of an awning where a sign may be lettered.

Valley - The trough formed by the intersection of two inclined planes of a roof.

Vent - An opening, as in a wall, serving as an outlet for air, smoke, fumes, or the like.

Veranda - A covered porch or balcony, extending along the outside of a building, planned for summer leisure.

Wainscot - A decorative or protective facing applied to the lower portion of a wall.

Water table - A projecting course of masonry, often decorative, at the base of a building that deflects water away from the foundation or from lower courses.

Weatherboards - Wood siding used as the exterior covering on a building of frame construction.

Window - An opening in an external wall of a building to admit light and (usually) air; usually glazed.

Wing - A subsidiary part of a building extending out from the main portion.

Wrought-iron - Iron that is hammered or forged into shape, usually decorative, either when the metal is hot or cold.
View of Fredericksburg’s former Town Hall from Market Square, c.1929.